Tag Archives: shaft carbon

China Hard Chrome Forging Carbon Steel Transmission Helical Bevel Pinion Spline Gear Shaft with Good quality

Product Description

1.Product Description
 

This Gear shaft, Herringbone Gear Shaft, Bevel Gear, Eccentric Shaft mainly used on vessel engine, fan internal gear
2.1. Gear Shaft Processing
Gear Shaft drawing CHECK, Make Forging Mold, Forging Mold Quality Inspection Check, Machine Processing, Check Size\Hardness\Surface Finish and other technical parameters on drawing. 
2.2. Herringbone Gear Shaft Package
Spray anti-rust oil on Herringbone Gear Shaft, Wrap waterproof cloth around Gear Shaft for reducer, Prepare package by shaft shape&weight to choose steel frame, steel support or wooden box etc.
2.3. OEM Customized Gear Shaft
We supply OEM SERVICE, customized herringbone gear shaft with big module, more than 1tons big weight, more than 3m length, 42CrMo/35CrMo or your specified required material gear shaft. 

2.Product Technical info.

Module m Range: 5~70
Gear Teeth Number z OEM by drawing’s technical parameters
Teeth Height H OEM by drawing’s technical parameters
Teeth Thickness S OEM by drawing’s technical parameters
Tooth pitch P OEM by drawing’s technical parameters
Tooth addendum Ha OEM by drawing’s technical parameters
Tooth dedendum Hf OEM by drawing’s technical parameters
Working height h’ OEM by drawing’s technical parameters
Bottom clearance C OEM by drawing’s technical parameters
Pressure Angle α OEM by drawing’s technical parameters
Helix Angle,    OEM by drawing’s technical parameters
Surface hardness HRC Range: HRC 50~HRC63(Quenching)
Hardness: HB Range: HB150~HB280; Hardening Tempering/ Hardened Tooth Surface 
Surface finish   Range: Ra1.6~Ra3.2
Tooth surface roughness Ra Range: ≥0.4
Gear Accuracy Grade   Grade Range: 5-6-7-8-9 (ISO 1328)
Length L Range: 0.8m~10m
Weight Kg Range: Min. 100kg~Max. 80tons Single Piece
Gear Position   Internal/External Gear
Toothed Portion Shape   Spur Gear/Bevel/Spiral/Helical/Straight
Shaft shape   Herringbone Gear Shaft / Gear Shaft / Eccentric Shaft / Spur Gear / Girth Gear / Gear Wheel
Material Forging/
Casting
Forging/ Casting 45/42CrMo/40Cr or OEM
Manufacturing Method   Cut Gear
Gear Teeth Milling  
Gear Teeth Grinding  
Heat Treatment   Quenching /Carburizing
Sand Blasting   Null
Testing   UT\MT
Trademark   TOTEM/OEM
Application   Gearbox, Reducer,
Petroleum,Cement,Mining,Metallurgy etc.
Wind driven generator,vertical mill reducer,oil rig helical gear,petroleum slurry pump gear shaft
Transport Package   Export package (wooden box, steel frame etc.)
Origin   China
HS Code   8483409000

Material Comparison List

 STEEL CODE GRADES COMPARISON
CHINA/GB ISO ГΟСТ ASTM JIS DIN
45 C45E4 45 1045 S45C CK45
40Cr 41Cr4 40X 5140 SCr440 41Cr4
20CrMo 18CrMo4 20ХМ 4118 SCM22 25CrMo4
42CrMo 42CrMo4 38XM 4140 SCM440 42CrMo4
20CrMnTi   18XГT   SMK22  
20Cr2Ni4   20X2H4A      
20CrNiMo 20CrNiMo2 20XHM 8720 SNCM220 21NiCrMo2
40CrNiMoA   40XH2MA/
40XHMA
4340 SNCM439 40NiCrMo6/
36NiCrMo4
20CrNi2Mo 20NiCrMo7 20XH2MA 4320 SNCM420  

3.Totem Service

TOTEM Machinery focus on supplying GEAR SHAFT, ECCENTRIC SHAFT, HERRINGBONE GEAR, BEVEL GEAR, INTERNAL GEAR and other parts for transmission devices & equipments(large industrial reducers & drivers). Which were mainly used in the fields of port facilities, cement, mining, metallurgical industry etc. We invested in several machine processing factories,forging factories and casting factories,relies on these strong reliable and high-quality supplier network, to let our customers worry free. 

TOTEM Philosophy: Quality-No.1, Integrity- No.1, Service- No.1 

24hrs Salesman on-line, guarantee quick and positive feedback. Experienced and Professional Forwarder Guarantee Log. transportation.

4.About TOTEM

1. Workshop & Processing Strength

2. Testing Facilities

3. Customer Inspection & Shipping

5. Contact Us

ZheJiang CZPT Machinery Co.,Ltd
 
Facebook: ZheJiang Totem

 

US $1,666
/ Piece
|
1 Piece

(Min. Order)

###

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Forging
Journal Diameter Dimensional Accuracy: It5-It9
Axis Shape: Straight Shaft
Shaft Shape: Customized

###

Customization:

###

Module m Range: 5~70
Gear Teeth Number z OEM by drawing’s technical parameters
Teeth Height H OEM by drawing’s technical parameters
Teeth Thickness S OEM by drawing’s technical parameters
Tooth pitch P OEM by drawing’s technical parameters
Tooth addendum Ha OEM by drawing’s technical parameters
Tooth dedendum Hf OEM by drawing’s technical parameters
Working height h’ OEM by drawing’s technical parameters
Bottom clearance C OEM by drawing’s technical parameters
Pressure Angle α OEM by drawing’s technical parameters
Helix Angle,    OEM by drawing’s technical parameters
Surface hardness HRC Range: HRC 50~HRC63(Quenching)
Hardness: HB Range: HB150~HB280; Hardening Tempering/ Hardened Tooth Surface 
Surface finish   Range: Ra1.6~Ra3.2
Tooth surface roughness Ra Range: ≥0.4
Gear Accuracy Grade   Grade Range: 5-6-7-8-9 (ISO 1328)
Length L Range: 0.8m~10m
Weight Kg Range: Min. 100kg~Max. 80tons Single Piece
Gear Position   Internal/External Gear
Toothed Portion Shape   Spur Gear/Bevel/Spiral/Helical/Straight
Shaft shape   Herringbone Gear Shaft / Gear Shaft / Eccentric Shaft / Spur Gear / Girth Gear / Gear Wheel
Material Forging/
Casting
Forging/ Casting 45/42CrMo/40Cr or OEM
Manufacturing Method   Cut Gear
Gear Teeth Milling  
Gear Teeth Grinding  
Heat Treatment   Quenching /Carburizing
Sand Blasting   Null
Testing   UT\MT
Trademark   TOTEM/OEM
Application   Gearbox, Reducer,
Petroleum,Cement,Mining,Metallurgy etc.
Wind driven generator,vertical mill reducer,oil rig helical gear,petroleum slurry pump gear shaft
Transport Package   Export package (wooden box, steel frame etc.)
Origin   China
HS Code   8483409000

###

 STEEL CODE GRADES COMPARISON
CHINA/GB ISO ГΟСТ ASTM JIS DIN
45 C45E4 45 1045 S45C CK45
40Cr 41Cr4 40X 5140 SCr440 41Cr4
20CrMo 18CrMo4 20ХМ 4118 SCM22 25CrMo4
42CrMo 42CrMo4 38XM 4140 SCM440 42CrMo4
20CrMnTi   18XГT   SMK22  
20Cr2Ni4   20X2H4A      
20CrNiMo 20CrNiMo2 20XHM 8720 SNCM220 21NiCrMo2
40CrNiMoA   40XH2MA/
40XHMA
4340 SNCM439 40NiCrMo6/
36NiCrMo4
20CrNi2Mo 20NiCrMo7 20XH2MA 4320 SNCM420  
US $1,666
/ Piece
|
1 Piece

(Min. Order)

###

Material: Alloy Steel
Load: Drive Shaft
Stiffness & Flexibility: Forging
Journal Diameter Dimensional Accuracy: It5-It9
Axis Shape: Straight Shaft
Shaft Shape: Customized

###

Customization:

###

Module m Range: 5~70
Gear Teeth Number z OEM by drawing’s technical parameters
Teeth Height H OEM by drawing’s technical parameters
Teeth Thickness S OEM by drawing’s technical parameters
Tooth pitch P OEM by drawing’s technical parameters
Tooth addendum Ha OEM by drawing’s technical parameters
Tooth dedendum Hf OEM by drawing’s technical parameters
Working height h’ OEM by drawing’s technical parameters
Bottom clearance C OEM by drawing’s technical parameters
Pressure Angle α OEM by drawing’s technical parameters
Helix Angle,    OEM by drawing’s technical parameters
Surface hardness HRC Range: HRC 50~HRC63(Quenching)
Hardness: HB Range: HB150~HB280; Hardening Tempering/ Hardened Tooth Surface 
Surface finish   Range: Ra1.6~Ra3.2
Tooth surface roughness Ra Range: ≥0.4
Gear Accuracy Grade   Grade Range: 5-6-7-8-9 (ISO 1328)
Length L Range: 0.8m~10m
Weight Kg Range: Min. 100kg~Max. 80tons Single Piece
Gear Position   Internal/External Gear
Toothed Portion Shape   Spur Gear/Bevel/Spiral/Helical/Straight
Shaft shape   Herringbone Gear Shaft / Gear Shaft / Eccentric Shaft / Spur Gear / Girth Gear / Gear Wheel
Material Forging/
Casting
Forging/ Casting 45/42CrMo/40Cr or OEM
Manufacturing Method   Cut Gear
Gear Teeth Milling  
Gear Teeth Grinding  
Heat Treatment   Quenching /Carburizing
Sand Blasting   Null
Testing   UT\MT
Trademark   TOTEM/OEM
Application   Gearbox, Reducer,
Petroleum,Cement,Mining,Metallurgy etc.
Wind driven generator,vertical mill reducer,oil rig helical gear,petroleum slurry pump gear shaft
Transport Package   Export package (wooden box, steel frame etc.)
Origin   China
HS Code   8483409000

###

 STEEL CODE GRADES COMPARISON
CHINA/GB ISO ГΟСТ ASTM JIS DIN
45 C45E4 45 1045 S45C CK45
40Cr 41Cr4 40X 5140 SCr440 41Cr4
20CrMo 18CrMo4 20ХМ 4118 SCM22 25CrMo4
42CrMo 42CrMo4 38XM 4140 SCM440 42CrMo4
20CrMnTi   18XГT   SMK22  
20Cr2Ni4   20X2H4A      
20CrNiMo 20CrNiMo2 20XHM 8720 SNCM220 21NiCrMo2
40CrNiMoA   40XH2MA/
40XHMA
4340 SNCM439 40NiCrMo6/
36NiCrMo4
20CrNi2Mo 20NiCrMo7 20XH2MA 4320 SNCM420  

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the two types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from two separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is one method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is one method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to one another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, two precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These three factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China Hard Chrome Forging Carbon Steel Transmission Helical Bevel Pinion Spline Gear Shaft     with Good quality China Hard Chrome Forging Carbon Steel Transmission Helical Bevel Pinion Spline Gear Shaft     with Good quality
editor by czh 2022-12-06

China OEM China Supplier Carbon Steel Spindle Shaft with Free Design Custom

Product Description

China supplier carbon steel spindle shaft

Product Description

stainless steel axle spindle,trailer axle spindle shaft,metal spindle

1. Product Description of shaft,axis, axle, spindle by cnc machining ,also which can be called CNC

Machining Parts,CNC Lathe Parts, CNC Machined Part, turning parts, milling parts. 

Process:CNC turning,CNC milling,CNC grinding;CNC lathe machining,CNC boring;CNC drilling,surface

treatment 

2. Manufacture Process 

Design confirm ,samples purchase, material blanking ,machininig ,surface treatment, Inspection,

assemblying, products’ Packing
 
Material: Stainless steel, steel , tools steel , Aluminium and other metal round bar.
 
Surface treatment: Anodized, plated , polished, grinding, black oxidating, passivation and

other surface treatment.

3. Advantages of products 

Competitive price with high quality. over 15 sets automatic lathe, drilling, cutting etc.  

Customized size and spec /OEM available.  

4. Applications of our products are used in auto parts, aerospace,railway

train ,communication, petroleum , marining, engineering and other machinery industries etc.  

Products show 

 

Types of Splines

There are 4 types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
splineshaft

Involute splines

The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents.
When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing.
A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals.
The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.

Parallel key splines

A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface.
A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials.
A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications.
The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
splineshaft

Involute helical splines

Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more.
Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer.
A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit.
The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the 2 components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.

Involute ball splines

When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion.
There are 3 basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints.
The 2 types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned.
The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
splineshaft

Keyed shafts

Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life.
Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery.
Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer.
Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.

China OEM China Supplier Carbon Steel Spindle Shaft   with Free Design CustomChina OEM China Supplier Carbon Steel Spindle Shaft   with Free Design Custom

China best AISI 1045 Carbon Steel Forged Shaft with Good quality

Product Description

AISI 1045 Carbon steel forged shaft

carbon steel forged shaft, forged spindle, forged trailer axle, spindle shaft,metal spindle    
                                             

(1)  Materials  : stainless steel, steel, iron, tool steel , alloy steel , aluminum,brass etc.    
 
 
(2)  Surface  treatments:  plating, powder coating, phosphate,passivation and  anodizing etc.
 
(3)  Processing  method:    
 
 
Castings,   forgings, CNC  milling,Turning, grinding, Boring, lapping, broaching and  others.
 
 
(4)  Heat  treatment  capability:
 
        
Annealing,   normalizing,   tempering,   nitriding,   carbonitriding,   carburizing  and  induction  hardening
 
 
(5)  Processing  machine:  
 
      
4-axis  machining  center,   CNC  turning  lathe,   milling/grinding  machine,   centerless  grinder,      drilling/boring etc. 
 
 
(6)  Inspection  machine:   CMM,   projector,   universal  testing  machine,   surfagauge  and  screw  gauge
 
 
(7)  Machining  precision depends on the Products of complex structure  
 
 
Producing  complex  machined  components  with  close  tolerances  in  difficult  to  machine  materials,   such  as straightness,  

perpendicularity,   circular  run  out,     concentricity,   length,   parallelism  and  symmetry
 

 
(8)  Packing  and  delivery  time:   Standard  export  package,   carton,  plywood  pallet  or  as  requirement
 
 
(9)  After-sales  service:
 
 
We  guarantee  the  quality  of  all  of  our  products.  we  know  that  keeping  our  buyers  satisfication is  the  key  to  our  long-term 

success.   That’ s  why  we  always  offer  professional  service,   superior  quality,   fast  deliveries  and  responsible  after-sales  service.
 

 
(10)  Customized  designs  and  specifications  are  accepted
 
 
(11)  OEM  services  are  provided
 
 
(12)  Compliant  with ISO9001  certificate
 
 
(13)  Payment  Terms:     T/T  or  L/C 
 
 
(14)  Delivery  Details  :       FOB  ZheJiang
 
 
(15)  Country  of  Origin  :     China  (  mainland  )
 
 
(16)  Main  Export  Markets:  Europe,   North  America,   Mid  East, South  America,   East and south Asia etc
 

Products show 

Our factory 

 

What You Should Know About Axle Shafts

There are several things you should know about axle shafts. These include what materials they’re made of, how they’re constructed, and the signs of wear and tear. Read on to learn more about axle shafts and how to properly maintain them. Axle shafts are a crucial part of any vehicle. But how can you tell if 1 is worn out? Here are some tips that can help you determine whether it’s time to replace it.

Materials used for axle shafts

When it comes to materials used in axle shafts, there are 2 common types of materials. One is carbon fiber, which is relatively uncommon for linear applications. Carbon fiber shafting is produced by CZPT(r). The main benefit of carbon fiber shafting is its ultra-low weight. A carbon fiber shaft of 20mm diameter weighs just 0.17kg, as opposed to 2.46kg for a steel shaft of the same size.
The other type of material used in axle shafts is forged steel. This material is strong, but it is difficult to machine. The resulting material has residual stresses, voids, and hard spots that make it unsuitable for some applications. A forged steel shaft will not be able to be refinished to its original dimensions. In such cases, the shaft must be machined down to reduce the material’s hardness.
Alternatively, you can choose to purchase a through-hardened shaft. These types of axle shafts are suitable for light cars and those that use single bearings on their hub. However, the increased diameter of the axle shaft will result in less resistance to shock loads and torsional forces. For these applications, it is best to use medium-carbon alloy steel (MCA), which contains nickel and chromium. In addition, you may also need to jack up your vehicle to replace the axle shaft.
The spline features of the axle shaft must mate with the spline feature on the axle assembly. The spline feature has a slight curve that optimizes contact surface area and distribution of load. The process involves hobbing and rolling, and it requires special tooling to form this profile. However, it is important to note that an axle shaft with a cut spline will have a 30% smaller diameter than the corresponding 1 with an involute profile.
Another common material is the 300M alloy, which is a modified 4340 chromoly. This alloy provides additional strength, but is more prone to cracking. For this reason, this alloy isn’t suited for street-driven vehicles. Axle shafts made from this alloy are magnaflushed to detect cracks before they cause catastrophic failure. This heat treatment is not as effective as the other materials, but it is still a good choice for axle shafts.
Driveshaft

Construction

There are 3 basic types of axle shafts: fully floating, three-quarter floating, and semi-floating. Depending on how the shaft is used, the axles can be either stationary or fully floating. Fully floating axle shafts are most common, but there are exceptions. Axle shafts may also be floating or stationary, or they may be fixed. When they are stationary, they are known as non-floating axles.
Different alloys have different properties. High-carbon steels are harder than low-carbon steels, while medium-carbon steels are less ductile. Medium-carbon steel is often used in axle shafts. Some shafts contain additional metals, including silicon, nickel, and copper, for case hardening. High-carbon steels are preferred over low-carbon steels. Axle shafts with high carbon content often have better heat-treatability than OE ones.
A semi-floating axle shaft has a single bearing between the hub and casing, relieving the main shear stress on the shaft but must still withstand other stresses. A half shaft needs to withstand bending loads from side thrust during cornering while transmitting driving torque. A three-quarter floating axle shaft is typically fitted to commercial vehicles that are more capable of handling higher axle loads and torque. However, it is possible to replace or upgrade the axle shaft with a replacement axle shaft, but this will require jacking the vehicle and removing the studs.
A half-floating axle is an alternative to a fixed-length rear axle. This axle design is ideal for mid-size trucks. It supports the weight of the mid-size truck and may support mid-size trucks with high towing capacities. The axle housing supports the inner end of the axle and also takes up the end thrust from the vehicle’s tires. A three-quarter floating axle, on the other hand, is a complex type that is not as simple as a semi-floating axle.
Axle shafts are heavy-duty load-bearing components that transmit rotational force from the rear differential gearbox to the rear wheels. The half shaft and the axle casing support the road wheel. Below is a diagram of different forces that can occur in the axle assembly depending on operating conditions. The total weight of the vehicle’s rear can exert a bending action on the half shaft, and the overhanging section of the shaft can be subject to a shearing force.
Driveshaft

Symptoms of wear out

The constant velocity axle, also called the half shaft, transmits power from the transmission to the wheels, allowing the vehicle to move forward. When it fails, it can result in many problems. Here are 4 common symptoms of a bad CV axle:
Bad vibrations: If you notice any sort of abnormal vibration while driving, this may be a sign of axle damage. Vibrations may accompany a strange noise coming from under the vehicle. You may also notice tire wobble. It is important to repair this problem as it could be harmful to your car’s handling and comfort. A damaged axle is generally accompanied by other problems, including a weak braking response.
A creaking or popping sound: If you hear this noise when turning your vehicle, you probably have a worn out CV axle. When the CV joints lose their balance, the driveshaft is no longer supported by the U-joints. This can cause a lot of vibrations, which can reduce your vehicle’s comfort and safety. Fortunately, there are easy ways to check for worn CV axles.
CV joints: A CV joint is located at each end of the axle shaft. In front-wheel drive vehicles, there are 2 CV joints, 1 on each axle. The outer CV joint connects the axle shaft to the wheel and experiences more movement. In fact, the CV joints are only as good as the boot. The most common symptoms of a failed CV joint include clicking and popping noises while turning or when accelerating.
CV joint: Oftentimes, CV joints wear out half of the axle shaft. While repairing a CV joint is a viable repair, it is more expensive than replacing the axle. In most cases, you should replace the CV joint. Replacement will save you time and money. ACV joints are a vital part of your vehicle’s drivetrain. Even if they are worn, they should be checked if they are loose.
Unresponsive acceleration: The vehicle may be jerky, shuddering, or slipping. This could be caused by a bent axle. The problem may be a loose U-joint or center bearing, and you should have your vehicle inspected immediately by a qualified mechanic. If you notice jerkiness, have a mechanic check the CV joints and other components of the vehicle. If these components are not working properly, the vehicle may be dangerous.
Driveshaft

Maintenance

There are several points of concern regarding the maintenance of axle shafts. It is imperative to check the axle for any damage and to lubricate it. If it is clean, it may be lubricated and is working properly. If not, it will require replacement. The CV boots need to be replaced. A broken axle shaft can result in catastrophic damage to the transmission or even cause an accident. Fortunately, there are several simple ways to maintain the axle shaft.
In addition to oil changes, it is important to check the differential lube level. Some differentials need cleaning or repacking every so often. CZPT Moreno Valley, CA technicians know how to inspect and maintain axles, and they can help you determine if a problem is affecting your vehicle’s performance. Some common signs of axle problems include excessive vibrations, clunking, and a high-pitched howling noise.
If you’ve noticed any of these warning signs, contact your vehicle’s manufacturer. Most manufacturers offer service for their axles. If it’s too rusted or damaged, they’ll replace it for you for free. If you’re in doubt, you can take it to a service center for a repair. They’ll be happy to assist you in any aspect of your vehicle’s maintenance. It’s never too early to begin.
CZPT Moreno Valley, CA technicians are well-versed in the repair of axles and differentials. The CV joint, which connects the car’s transmission to the rear wheels, is responsible for transferring the power from the engine to the wheels. Aside from the CV joint, there are also protective boots on both ends of the axle shaft. The protective boots can tear with age or use. When they tear, they allow grease and debris to escape and get into the joint.
While the CV joint is the most obvious place to replace it, this isn’t a time to ignore this important component. Taking care of the CV joint will protect your car from costly breakdowns at the track. While servicing half shafts can help prevent costly replacement of CV joints, it’s best to do it once a season or halfway through the season. ACV joints are essential for your car’s safety and function.

China best AISI 1045 Carbon Steel Forged Shaft   with Good qualityChina best AISI 1045 Carbon Steel Forged Shaft   with Good quality

China high quality China Supplier Carbon Steel Spindle Shaft with Good quality

Product Description

MaHangZhou CZPT Technology Co., Ltd. has the capacity to guarantee the quality for every step, from raw material (forging), then heating treatment, finally machining. We have our own forging mill, heating teatment shop and machining shop. At present we could supply various of lage main axles and shaft, turbin shaft, cylinder shaft, windy generator shaft, roller shaft, wheel forging, drill bit forging and kinds of irregular parts based on the drawing provided by customers.

Steel material for shaft and forging parts:
 

Engineering Steel  
GB
GB/T 700
JIS
JIS G3101
DIN (W-Nr.)
EN10571-2 / DIN17100
AISI/ASTM
ASTM A36
BS OTHERS
Q235B SS400 S235JR / RST37-2 A36    
Q235C   S235J0 / ST37-3 U      
Q235D   S235J2      
GB
GB/T1591
JIS DIN (W-Nr.)
EN10571-2 / DIN17100
AISI/ASTM BS OTHERS
Q355B   S355JR      
Q355C   S355J0 / ST52-3U      
Q355D   S355J2 / ST52-3 N      
Q355E   S355K2      
GB
GB/T 699
JIS
JIS G4051
DIN (W-Nr.)
EN 10083-2
AISI/ASTM
ASTM A20
BS OTHERS
      1018 EN2C  
20 S20C C20 1571 EN3B/070M20 ASTM A105
35 S35C C30 1035    
45 S45C C45E/1.1191 1045 EN8D/080M40  
50 S50C C50/1.1206 1050 080M50  
55 S55C C55 1055 EN9/070M55  
GB
GB/T 3077
JIS
JIS G4105/JIS G4103
DIN (W-Nr.)
EN 15710
AISI/ASTM
ASTM A29
BS
BS 970
OTHERS
40Cr SCr440 41Cr4(1.7035) 5140    
15CrMo SCM415 16CrMo44/1.7337      
20CrMo SCM420 18CrMo4/1.7243 4118    
30CrMo SCM430 25CrMo4/1.7218 4130 708A25/708M25  
42CrMo SCM440 42crmo4/1.7225 4140 EN19/709M40  
  SCM445   4145    
40CrNiMoA SNCM 439/SNCM8 36CrNiMo4/1.6511 4340 EN24/817M40  
    40NiMoCr10-5/1.6745   EN26/826M40  
    34CrNiMo6 / 1.6582 4337    
    30CrNiMo16-6/1.6747 4330V EN30B/835M30  
    32CrMo12/1.7361   EN40B/722M24  
16CrMnH / 20CrMnTi   16MnCr5 / 1.7131 5115    
20CrMn   20MnCr5 / 1.7147      
    15CrNi6/1.5919 3115    
    16NiCr4/1.5714   EN351/637M17  
      4615/4617 EN34/665M17  
    14NiCr14/1.5752 3310/3415 EN36/655M13  
    15NiCrMo16-5/1.6723   EN39/835M15  
17CrNiMo6   18CrNiMo7-6 (1.6587) 4815    
20CrNiMo SNCM220 1.6523/21NiCrMo2 8620 805M20  
    20CrNiMo5   EN353  
GCr15 SUJ2 52100/1.3505   EN31/535A99  
38CrMoAl SACM645 41CrAlMo7/34CrAlMo5   905M39/905M31 41CrAlMo74(ISO)

 

High quality AISI 4140 forging steel shaft

AISI 4140 forging steel shaft,machined shaft , long shaft, stainless steel shaft ,axis, spindle,
We King Rail were already engaged in exporting steel railway wheels , axles ,bearings and other forging products for about 12 years, materials are a great variety of hot forged, hot rolled and cold drawn Steels,  including engineering steel, cold work tool steel, hot work tool steel, plastic mold steel, spring steel, high speed steel, stainless steel etc., besides King Rail also has their own heating treatment shop and machining shop to provide heating treatment, cutting and further machining service.

Since 2012 year,  we has the right to export all FORGED STEEL behalf of MaHangZhou CZPT Technology Co., Ltd. which is specialized in melting and forging of special steel since 1965 year, now King Rail is 1 of the biggest manufacturer of forged product in China.The forged products are used in Automotive, Aerospace, Power Generation, Oil & Gas, Transportation and Industrial. 

Till 2013 year, many customers need HOT ROLLED and COLD DRAWN steel from Masteel Industrial, in order to provide one-stop solution to our customers,  began to cooperate with Xihu (West Lake) Dis.bei Special Steel (HangZhou and HangZhou mill), Baosteel, Tiangong International, Changcheng Special Steel for hot rolled tool steel, cooperate with HangZhou Speical Steel, HangZhou HangZhou Speical Steel, Shagang Group, CZPT Group for hot rolled engineering steel. Now we already set up the warehouse in ZheJiang and ZheJiang City, more than 20000 tons ex-stock could be supplied with kinds of sizes.

Then from 2018 year, King Rail decide to provide further manufacturer processing service, at present we could supply various of lage main shaft, turbin shaft, cylinder shaft, windy generator shaft, roller shaft, wheel forging, drill bit forging and kinds of irregular parts based on the drawing provided by customers.

King Rail  is the professional one-stop steel manufacturer and trader, stockist and exporter in China, our customers spread all over the world, include West Europe, North America, South America, Asia, Middle Asia, Africa, Australia, etc.

The company owns advanced special steel smelting facilities and forging processing equipments, the main steel-making equipment include 2 sets of 50t ultra-high power electric arc furnaces,2 sets of 60t LF refining furnaces,1 set of 60t vacuum degassing refining CZPT and 4 sets of 1-20t electroslag re-melting furnaces.
The main forging equipments mainly include:3 sets of 5t electro-hydraulic hammers, 1 set of high-speed forging units of 800t,1600t,2000t and 4500t respectively.

 

Advantages of US
Competitive price with high quality. over 15 sets automatic lathe, drilling, cutting etc.  Customized size and spec /OEM available.  Near ZheJiang port with convenient transportation.  Short lead time (7-15days depends on order qty). 

For Further Information, Please Contact Me Here Now!

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
splineshaft

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
splineshaft

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
splineshaft

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

China high quality China Supplier Carbon Steel Spindle Shaft   with Good qualityChina high quality China Supplier Carbon Steel Spindle Shaft   with Good quality