Tag Archives: gear machine

China Professional New Low Prcie High Precision Mlt-Yk3120 Direct Drive Six-Axis CZPT Nc System Gear Hobbing Machine Module Range 0.5-4 (MLT-YK3120-E) car drive shaft

Product Description

Economy High Precision Mlt-Yk3120 Direct Drive Six-Axis CNC Gear Hobbing Machine Module

The same quality, lowest price; same price, best quality.

Description   Parameter
Processing Capacity

 

Control the number of axes Axis 6
Gear Type Cylindrical spur gear, helical gear, worm gear, sprocket, drum teeth, taper teeth
And other tooth parts
Machining Accuracy Mass production grade 7 (GB/T10095-2008)
Workpiece Workpiece

 

Max machined diameter 200mm
Min machining Module The 0.5 mm
Max machining Module 4mm
Max machining Length 250mm
 Cut teeth Number 4 or higher
Cutter
 Tool
Maximum hob speed 2000 r/min
Maximum length of hob 120mm (27,32 tool bar can hold 150mm length hob)
Maximum outside diameter of hob 100mm
Dia of changeable center axis which assemble hobbing cutter 22,27,32
Tool Position Accuracy ≤5um
Hob Shifting Travel 150mm
Hob shifting Auto
Shaft Hob Head Swing Angle Plus or minus 45 °
Turntable Z-Slide Travel 300mm
Turntable Dia 250mm
Turntable Max. RPM 200RPM
Machine Power
 Power
Main Motor Power Main motor power 18kw
Total machine Power Total Power 35kw
Size & Weight Total Floor Space (L*W*H) 2400 * 2000 * 2600
Machine Weight Machine weight 6000Kg

Processing Object:

Cylindrical spur gear, helical gear, worm gear, sprocket, drum teeth, taper teeth
And other tooth parts

Technical description

 

MLT-YK3120 CNC high speed gear hobbing machine is an excellent domestic vertical gear hobbing machine. Carefully developed by MLT and with fully independent core technology.
Remark: Picture shown as 4 axis machine

MLT-YK3120 high speed six-axis CNC hobbing machine is our company carefully developed and has completely independent core technology of excellent domestic CNC direct drive hobbing machine, the machine integrates the advantages of modern CNC automatic CNC technology, the use of direct drive B C axis, with high speed, high precision and high torque and excellent dynamic response performance, Compared with other equipment of the same type, it has the characteristics of high machining precision, high processing efficiency and good accuracy retention. Can be processed straight teeth, bevel teeth, small taper, drum and other gears, can easily achieve 45° tooth shape processing. Can be processed spline, less teeth gear and other special gear. With 2 precision rolling tool setting device. Supports dry cutting.

 

 

Service item:

1. Machine warranty period: 12 months once the customer receives machine, after 12 months, we may answer the customer’s question on line or by e-mail within 24 hours

2. CZPT will prepare 1 more set of quick-wear components with the machine for the customer

3. CZPT will not provide or change any part or component for free if the customer damages them abnormally, customer needs to purchase them separately

4. CZPT will afford the customer’s technician local transportation, accommodation and catering cost when the customer’s technician comes to CZPT factory to have a train or inspects the machine before the machine delivery and the customer will afford their technician travelling cost

5. In the warranty period, if the customer requests CZPT engineer to support in foreign country, CZPT will supports to check equipment and train the customer technician for free but the customer needs to afford Mltor’s engineer travelling expenses, local transportation and accommodation and catering cost

After-sales Service: 12 Month
Warranty: 12 Month
Application: Gear
Process Usage: Gear Hobbing
Movement Method: Linear Control
Control Method: Open-Loop Control
Samples:
US$ 49.99/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

splineshaft

The Different Types of Splines in a Splined Shaft

A splined shaft is a machine component with internal and external splines. The splines are formed in four different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right one for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.

Involute splines

Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.

Parallel splines

Parallel splines are formed on a splined shaft by putting one or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
splineshaft

Serrated splines

A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.

Ball splines

The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is one of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least one ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to one another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the two shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
splineshaft

Sector no-go gage

A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has two groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other two pressure angles. It is often used when the splined shaft material is harder than usual.

China Professional New Low Prcie High Precision Mlt-Yk3120 Direct Drive Six-Axis CZPT Nc System Gear Hobbing Machine Module Range 0.5-4 (MLT-YK3120-E)   car drive shaft	China Professional New Low Prcie High Precision Mlt-Yk3120 Direct Drive Six-Axis CZPT Nc System Gear Hobbing Machine Module Range 0.5-4 (MLT-YK3120-E)   car drive shaft
editor by CX 2023-11-15

China ISO9001 Certificate Machine Spare Part Spline Spur Gear Shaft drive shaft bearing

Problem: New
Warranty: 1 Year
Relevant Industries: Lodges, Garment Shops, Constructing Content Outlets, Producing Plant, Machinery Fix Stores, Meals & Beverage Factory, Farms, Cafe, Home Use, Retail, Foods Shop, Printing Shops, Design works , Power & Mining, Food & Beverage Shops, Other, Advertising Business
Fat (KG): 1
Showroom Location: None
Video clip outgoing-inspection: Offered
Machinery Examination Report: Provided
Advertising and marketing Variety: Regular Item
Guarantee of main components: 1 Year
Main Parts: Motor, Bearing, Gearbox, Motor, Pressure vessel, Equipment, Pump
Framework: Equipment
Content: Stainless Steel, Carbon Metal, Aluminum, Brass, Stainless Steel, Carbon Steel, Aluminum, Alloy, Brass, Cooper
Coatings: NICKEL
Torque Ability: Normal
Product Quantity: YW-SM-0032
Item title: Shaft
Finish: Plating, Paint, Sprucing
Machining: CNC
Technologies: Precision Machining
Standard: ASTM & AISI & DIN
OEM: Obtainable
Search term: OEM Precision Precision
Proportions: Customized
Application: Industrial
Packaging Specifics: Carton + pallet or Plywood circumstances or Other package deal as for each buyer requirement
Port: HangZhou & ZheJiang & ZheJiang

ISO9001 Certification Device Spare Element Spline Spur Equipment Shaft

Product name Precision Machining
Tolerance minimal tolerance .0005mm
Materials Stainless Metal: SS201,SS301,SS303, SS304, 5.5KW7.5KW 380v 3 Period VFD Drive Frequency Converter Speed Variator SS316, SS416 and many others.
Metal: gentle metal, Carbon steel, 4140, 4340, Q235, Q345B, twenty#, forty five# and so forth.
Aluminum: AL6061, Al6063, AL6082, AL7075, AL5052, A380 and many others.
Brass: HPb63, HPb62, HPb61, HPb59, H59, H68, H80, H90 and so forth.
Copper: C11000,C12000,C12000, C36000 etc.
Plastic: Abs, Computer, PE, POM, Delrin, Nylon,PP, Peek etc.
Other: Titanium,and so forth.We handle numerous other kind of supplies. Remember to make contact with us if your required content is not shown earlier mentioned.
Surface area Remedy Stainless Steel:Sprucing, Passivating, Sandblasting, Laser engraving,Oxide black,Electrophoresis black
Metal: Zinc plating, Personalized Teeth Finishing Generate Gears Roller Chains and Sprockets Oxide black, Nickel plating, Chrome plating, Carburized, Powder Coated, Warmth treatment method.
Aluminum:Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film,Brushing,Polishing.
Brass: Nickel plating,chrome plating,Electrophoresis black,Oxide black,Powder coated.
Plastic:Plating gold (Stomach muscles), Painting, Brushing (Acylic), aser engraving.
Drawing Format jpg/.pdf/.dxf/.dwg/.igs./.stp/x_t. and many others
Testing Equipment CMM,Electronic Height Gauge, caliper, Coordinate measuring device, projecter machine, roughness tester, hardness tester and so on
Certification CE, TUV, SGS or as your need to do examination by the third get together
Shipping time 10-15 days for sample, 35-40 days for bulk buy
Packing Plywood pallet, plywood box or as for each your prerequisite
Quality Handle Executed by ISO9001 Method and PPAP Good quality management files
Inspection IQC, IPQC,FQC,QA
Services Heat and swift response provider provided by the professional Export Sales Staff with a lot of years’ encounter in handling exports to the US, Europe, Japan and other nations around the world and locations.
Quality Manage Packing & Shipping Company Profile ZheJiang Yunwei Industrial Co., Ltd is 1 of the professionanl company for numerous varieties of OEM/ODM precision casting parts, stainless steel rigging hardware and stainless steel marine components, Wholesale Custom-made Screw Sort Air Compressor with CE certificate for Marble sharpening usually regards top quality as a crucial criterion, and utilized to all elements of its operations. With a team of hightly specialist and knowledgeable egineers getting charge of the layout, drawing draft & modification, creation and top quality management, we are CZPT to meet all of our customer’ prerequisite. FAQ 1. What is your payment time period ?T/T, L/C, Western Union, PayPal, Trade Assurance etc…2. What is your shipping time for this purchase ?Usually our supply time is thirty-35 times. It also must be depend on what kind of product and the quantity you need. But if we have the merchandise in stock, then the shipping time will be in about 10 days or considerably less.3. Can you send out me samples then I can come to feel your good quality ?Sure, of system. Cost-free samples are accessible.4. Can you acknowledge personalized orders?Of course, any personalized merchandise is obtainable. You can immediately send us your style item draft to us, then we will examine with our specialist designers and validate all appropriate details to you.5. Can you incorporate our very own brand on the merchandise?Of course. We provide the provider of including customers’ brand on the items. There are several types of this service.If you have this need to have, welcome to get in touch with me!6. Are you generating by your self ?Indeed, we are. We have our very own manufacturing facility and showroom. Warmly welcome to browsing our manufacturing facility at any time. We can also choose you up atairport and station.7. Can I get a low cost?Indeed. For big order and Regular Clients, we give realistic reductions.8. How about your quality ensure?We’re 100% responsible for injury of total container goods if it’s brought on by our incorrect package.We have quite rigid QC group to management the high quality difficulty.From content to concluded products, each and every stage, our inspection gentleman to inspect it.For each and every buy, we will take a look at and have the report. 9. Casting ProcessInvestment solid (wax CZPT created by center-temperature wax) /Precision casting, dropped Wax Casting (wax CZPT made by lower-temperaturewax)/ Precision casting.ten. Casting ToleranceCT7-8 for Lost-wax casting Approach, CT4-6 for investment casting procedure.11. Machining ProcessCNC Machining/ Lathing/ Milling/ Turning/ Unexciting/ Drilling/ Tapping/ Broaching/Reaming /Grinding/Honing and etc12. Machining ToleranceFrom .005mm-.01mm-.1mm.13. Common Goods ApplicationMetal Components Solution for Motor vehicle, Agriculture machine, Design Machine, transportation equipment, Valve and Pump program,Agriculture device metal Components and many others Make contact with Us Really do not see what you’re hunting for on our internet site? Just request and we’ll do every little thing we can to get you what you want. You can get a reply within 60 minutes.8:00am – 22:00pm (China Time)Monday –Saturday (China Time)You also can get in touch with me on Sunday if some thing is urgent!

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between two rotating shafts. It consists of two parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify one specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the two spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the two splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on one spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to four different performance requirement specifications for each spline.
The results of the analysis show that there are two phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered two levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China ISO9001 Certificate Machine Spare Part Spline Spur Gear Shaft     drive shaft bearing				China ISO9001 Certificate Machine Spare Part Spline Spur Gear Shaft     drive shaft bearing
editor by czh 2023-02-19

China CNC machine tool custom mechanical spindle gear custom drive shaft

Error:获取返回内容失败,
Your session has expired. Please reauthenticate.

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When two splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by five mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to fifty-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows four concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these three components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using two different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these two methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the three factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China CNC machine tool custom mechanical spindle gear     custom drive shaft	China CNC machine tool custom mechanical spindle gear     custom drive shaft
editor by czh 2023-02-16

China High Quality China Changzhou Motor Gear Manufacturer Internal Spline Main Gear Shaft for Machine Tools drive shaft shop

Merchandise Description

1. Description
 

Item title

304 stainless metal shaft

Material 

Stainless Metal,Aluminum,Brass, Bronze,Carbon metal and ect. environmental defense materials.

Size 

 Customized in accordance to your drawing.

Companies

OEM, design and style, tailored

Tolerance 

+/-.01mm to +/-.005mm

Surface area treatment method

Passivation

*Polishing

*Anodizing

*Sand blasting

*Electroplating(coloration, blue, white, black zinc, Ni, Cr, tin, copper, silver)

*Black oxide coating

*Heat-disposing

*Scorching-dip galvanizing

*Rust preventive oil

MOQ

1 piece Copper bushing

Samples

We can make sample inside of 7days cost-free of demand

Certification

ISO9001:2015  cnc machining turning elements shaft

Payment Phrases

Financial institution TransferWestern Union Paypal Payoneer, Alibaba Trade Assurance30% deposit & equilibrium ahead of shipping.

Delivery time

Inside fifteen-20 workdays soon after deposit or payment received

Shipping Port

HangZhou  304 stainless steel shaft

two. Principal Motor Shafts

3. Perform Circulation

four. Software

five. About US

six. Package deal and Delivery

1.FedEX / DHL / UPS / TNT for samples,Doorway to door service
2.By sea for batch products
3.Customs specifying freight forwarders or negotiable transport approaches
4.Shipping Time:twenty-25 Days for samples30-35 Days for batch merchandise
5.Payment Conditions:T/T,L/C at sight,D/P and many others.

seven.FAQ
Q1. When can I get the quotation?
We generally estimate in 24 several hours right after we get your inquiry.
If you are urgent to get the value, you should ship the message on  and  or phone us straight.

Q2. How can I get a sample to verify your quality?
Soon after price confirmed, you can requiry for samples to check out top quality.
If you need the samples, we will charge for the sample expense.
But the sample value can be refundable when your quantity of first purchase is over the MOQ

Q3. Can you do OEM for us?
Of course, the product packing can be created as you want.

Q4. How about MOQ?
1 pcs for carton box.

Q5. What is your primary industry?
Jap Europe, Southeast Asia, South The us.
 
Please feel  free to make contact with us if you have any concern.

 

US $0.99-6.99
/ Piece
|
100 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

###

Material: Carbon Steel
Load: Central Spindle
Stiffness & Flexibility: Stiffness / Rigid Axle

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

###

Customization:

###

Product name

304 stainless steel shaft

Material 

Stainless Steel,Aluminum,Brass, Bronze,Carbon steel and ect. environmental protection material.

Size 

 Customized according to your drawing.

Services

OEM, design, customized

Tolerance 

+/-0.01mm to +/-0.005mm

Surface treatment

Passivation

*Polishing

*Anodizing

*Sand blasting

*Electroplating(color, blue, white, black zinc, Ni, Cr, tin, copper, silver)

*Black oxide coating

*Heat-disposing

*Hot-dip galvanizing

*Rust preventive oil

MOQ

1 piece Copper bushing

Samples

We can make sample within 7days free of charge

Certificate

ISO9001:2015  cnc machining turning parts shaft

Payment Terms

Bank Transfer;Western Union; Paypal ; Payoneer, Alibaba Trade Assurance30% deposit & balance before shipping.

Delivery time

Within 15-20 workdays after deposit or payment received

Shipping Port

Shenzhen  304 stainless steel shaft

US $0.99-6.99
/ Piece
|
100 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

###

Material: Carbon Steel
Load: Central Spindle
Stiffness & Flexibility: Stiffness / Rigid Axle

###

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

###

Customization:

###

Product name

304 stainless steel shaft

Material 

Stainless Steel,Aluminum,Brass, Bronze,Carbon steel and ect. environmental protection material.

Size 

 Customized according to your drawing.

Services

OEM, design, customized

Tolerance 

+/-0.01mm to +/-0.005mm

Surface treatment

Passivation

*Polishing

*Anodizing

*Sand blasting

*Electroplating(color, blue, white, black zinc, Ni, Cr, tin, copper, silver)

*Black oxide coating

*Heat-disposing

*Hot-dip galvanizing

*Rust preventive oil

MOQ

1 piece Copper bushing

Samples

We can make sample within 7days free of charge

Certificate

ISO9001:2015  cnc machining turning parts shaft

Payment Terms

Bank Transfer;Western Union; Paypal ; Payoneer, Alibaba Trade Assurance30% deposit & balance before shipping.

Delivery time

Within 15-20 workdays after deposit or payment received

Shipping Port

Shenzhen  304 stainless steel shaft

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When two splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by five mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to fifty-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows four concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these three components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using two different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these two methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the three factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China High Quality China Changzhou Motor Gear Manufacturer Internal Spline Main Gear Shaft for Machine Tools     drive shaft shop	China High Quality China Changzhou Motor Gear Manufacturer Internal Spline Main Gear Shaft for Machine Tools     drive shaft shop
editor by czh 2022-12-20