Product Description
Company Profile
Certifications
Exhibition Strength
Our Advantages
FAQ
Q: Are you trading company or manufacturer ?
A: We are exactly a factory.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
Q: How long is your delivery time ? What is your terms of payment ?
A: Generally it is 40-45 days. The time may vary depending on the product and the level of customization. For standard products,
the payment is: 30% T/T in advance, balance before shippment.
Q: What is the exact MOQ or price for your product ?
A: As an OEM company, we can provide and adapt our products to a wide range of needs.Thus, MOQ and price may greatly vary with
size, material and further specifications; For instance, costly products or standard products will usually have a lower MOQ.
Any questions are welcomed! Come and contact us !
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
---|
Service: | OEM/ODM |
---|---|
Certificate: | ISO9001 |
Transport Package: | Standard Marine Wooden Case |
Samples: |
US$ 999999/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
Types of Splines
There are four types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
Involute splines
The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents.
When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing.
A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals.
The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.
Parallel key splines
A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface.
A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials.
A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications.
The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
Involute helical splines
Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more.
Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer.
A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit.
The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the two components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.
Involute ball splines
When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion.
There are three basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints.
The two types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned.
The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
Keyed shafts
Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life.
Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery.
Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer.
Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.
editor by CX 2023-05-23
China Stable supply industry cardan shaft farm cardan shaft cardan shaft balancing machine drive shaft ends
Condition: New
Warranty: 1 12 months
Applicable Industries: Accommodations, Garment Outlets, Developing Content Outlets, Producing Plant, Equipment Restore Outlets, Meals & Beverage Manufacturing facility, Farms, Restaurant, Property Use, Retail, Foods Store, Printing Outlets, Design works , Power & Mining, Food & Beverage Stores, Marketing Company
Weight (KG): 48.two
Showroom Spot: None
Online video outgoing-inspection: Supplied
Equipment Check Report: Supplied
Advertising Sort: New Solution 2571
Warranty of main components: 1 Yr
Core Factors: Bearing, Spline pair
Construction: Adaptable
Content: 40Cr/forty five#
Coatings: paint
Torque Capacity: 21000
Model Amount: 0082
Merchandise name: Telescopic generate shaft
Coating: 168mm
Rated torque: 15000
Software: Numerous autos
Functions: Coated nylon enhances wear resistance, strength, corrosion protection
Universal joint dimension: 57*a hundred and forty four
Diameter of shaft tube: 110mm
Certification: IATF16949:2016 Top quality Technique
MOQ: 2 Piece
Good quality: 30.6–48.2kg
Packaging Specifics: Wooden box or other
Port: HangZhou Port, Xihu (West Lake) Dis. Port, ZheJiang Port, HangZhou Port, HangZhou Port
VR Stable source sector cardan shaft farm cardan shaft cardan shaft balancing deviceThe sliding sleeve of the telescopic push shaft is coated with nylon to boost dress in resistance and energy, and at the very same time enjoy a role of corrosion protection for the spline. Used in building equipment processing vegetation, car makers, OEMs, constructing materials retailers, producing crops, machinery repair stores, etc. Merchandise requirements
Product number | Maximum torque (N.m) | Rotation diameter (mm) | Rated torque (N.m) | Universal joint dimension(mm) | Diameter of shaft tube (mm) |
BJ212 | 1600 | Ø100 | 1000 | Φ30×88 | Ø 900 cfm 10Bar transportable diesel air compressor 50 |
BJ130 | 2500 | Ø110 | 2700 | Φ32×93 | Ø63.5 |
NJ130 | 3200 | Ø118 | 2500 | Φ35×98 | Ø76 |
EQ140 | 6500 | Ø142 | 4100 | Φ39×118 | Ø89 |
EQ153 | 9000 | Ø169 | 6000 | Φ47×140 | Ø89 |
0125 | 16500 | Ø156 | 10000 | Φ52×133 | Ø100 |
0082 | 21000 | Ø168 | 15000 | Φ57×144 | Ø110 |
395 | 27000 | Ø178 | 17000 | Φ57×152 | Ø120 |
656 | 44000 | Ø198 | 25000 | Φ68×165 | Ø140 |
Y165E1 | 52500 | Ø OMRBMR series substantial torque with huge radial pressure hydraulic obitor motor 210 | 30000 | Φ68×193 | Ø150 |
What Are the Advantages of a Splined Shaft?
If you are looking for the right splined shaft for your machine, you should know a few important things. First, what type of material should be used? Stainless steel is usually the most appropriate choice, because of its ability to offer low noise and fatigue failure. Secondly, it can be machined using a slotting or shaping machine. Lastly, it will ensure smooth motion. So, what are the advantages of a splined shaft?
Stainless steel is the best material for splined shafts
When choosing a splined shaft, you should consider its hardness, quality, and finish. Stainless steel has superior corrosion and wear resistance. Carbon steel is another good material for splined shafts. Carbon steel has a shallow carbon content (about 1.7%), which makes it more malleable and helps ensure smooth motion. But if you’re not willing to spend the money on stainless steel, consider other options.
There are two main types of splines: parallel splines and crowned splines. Involute splines have parallel grooves and allow linear and rotary motion. Helical splines have involute teeth and are oriented at an angle. This type allows for many teeth on the shaft and minimizes the stress concentration in the stationary joint.
Large evenly spaced splines are widely used in hydraulic systems, drivetrains, and machine tools. They are typically made from carbon steel (CR10) and stainless steel (AISI 304). This material is durable and meets the requirements of ISO 14-B, formerly DIN 5463-B. Splined shafts are typically made of stainless steel or C45 steel, though there are many other materials available.
Stainless steel is the best material for a splined shaft. This metal is also incredibly affordable. In most cases, stainless steel is the best choice for these shafts because it offers the best corrosion resistance. There are many different types of splined shafts, and each one is suited for a particular application. There are also many different types of stainless steel, so choose stainless steel if you want the best quality.
For those looking for high-quality splined shafts, CZPT Spline Shafts offer many benefits. They can reduce costs, improve positional accuracy, and reduce friction. With the CZPT TFE coating, splined shafts can reduce energy and heat buildup, and extend the life of your products. And, they’re easy to install – all you need to do is install them.
They provide low noise, low wear and fatigue failure
The splines in a splined shaft are composed of two main parts: the spline root fillet and the spline relief. The spline root fillet is the most critical part, because fatigue failure starts there and propagates to the relief. The spline relief is more susceptible to fatigue failure because of its involute tooth shape, which offers a lower stress to the shaft and has a smaller area of contact.
The fatigue life of splined shafts is determined by measuring the S-N curve. This is also known as the Wohler curve, and it is the relationship between stress amplitude and number of cycles. It depends on the material, geometry and way of loading. It can be obtained from a physical test on a uniform material specimen under a constant amplitude load. Approximations for low-alloy steel parts can be made using a lower-alloy steel material.
Splined shafts provide low noise, minimal wear and fatigue failure. However, some mechanical transmission elements need to be removed from the shaft during assembly and manufacturing processes. The shafts must still be capable of relative axial movement for functional purposes. As such, good spline joints are essential to high-quality torque transmission, minimal backlash, and low noise. The major failure modes of spline shafts include fretting corrosion, tooth breakage, and fatigue failure.
The outer disc carrier spline is susceptible to tensile stress and fatigue failure. High customer demands for low noise and low wear and fatigue failure makes splined shafts an excellent choice. A fractured spline gear coupling was received for analysis. It was installed near the top of a filter shaft and inserted into the gearbox motor. The service history was unknown. The fractured spline gear coupling had longitudinally cracked and arrested at the termination of the spline gear teeth. The spline gear teeth also exhibited wear and deformation.
A new spline coupling method detects fault propagation in hollow cylindrical splined shafts. A spline coupling is fabricated using an AE method with the spline section unrolled into a metal plate of the same thickness as the cylinder wall. In addition, the spline coupling is misaligned, which puts significant concentration on the spline teeth. This further accelerates the rate of fretting fatigue and wear.
A spline joint should be lubricated after 25 hours of operation. Frequent lubrication can increase maintenance costs and cause downtime. Moreover, the lubricant may retain abrasive particles at the interfaces. In some cases, lubricants can even cause misalignment, leading to premature failure. So, the lubrication of a spline coupling is vital in ensuring proper functioning of the shaft.
The design of a spline coupling can be optimized to enhance its wear resistance and reliability. Surface treatments, loads, and rotation affect the friction properties of a spline coupling. In addition, a finite element method was developed to predict wear of a floating spline coupling. This method is feasible and provides a reliable basis for predicting the wear and fatigue life of a spline coupling.
They can be machined using a slotting or shaping machine
Machines can be used to shape splined shafts in a variety of industries. They are useful in many applications, including gearboxes, braking systems, and axles. A slotted shaft can be manipulated in several ways, including hobbling, broaching, and slotting. In addition to shaping, splines are also useful in reducing bar diameter.
When using a slotting or shaping machine, the workpiece is held against a pedestal that has a uniform thickness. The machine is equipped with a stand column and limiting column (Figure 1), each positioned perpendicular to the upper surface of the pedestal. The limiting column axis is located on the same line as the stand column. During the slotting or shaping process, the tool is fed in and out until the desired space is achieved.
One process involves cutting splines into a shaft. Straddle milling, spline shaping, and spline cutting are two common processes used to create splined shafts. Straddle milling involves a fixed indexing fixture that holds the shaft steady, while rotating milling cutters cut the groove in the length of the shaft. Several passes are required to ensure uniformity throughout the spline.
Splines are a type of gear. The ridges or teeth on the drive shaft mesh with grooves in the mating piece. A splined shaft allows the transmission of torque to a mate piece while maximizing the power transfer. Splines are used in heavy vehicles, construction, agriculture, and massive earthmoving machinery. Splines are used in virtually every type of rotary motion, from axles to transmission systems. They also offer better fatigue life and reliability.
Slotting or shaping machines can also be used to shape splined shafts. Slotting machines are often used to machine splined shafts, because it is easier to make them with these machines. Using a slotting or shaping machine can result in splined shafts of different sizes. It is important to follow a set of spline standards to ensure your parts are manufactured to the highest standards.
A milling machine is another option for producing splined shafts. A spline shaft can be set up between two centers in an indexing fixture. Two side milling cutters are mounted on an arbor and a spacer and shims are inserted between them. The arbor and cutters are then mounted to a milling machine spindle. To make sure the cutters center themselves over the splined shaft, an adjustment must be made to the spindle of the machine.
The machining process is very different for internal and external splines. External splines can be broached, shaped, milled, or hobbed, while internal splines cannot. These machines use hard alloy, but they are not as good for internal splines. A machine with a slotting mechanism is necessary for these operations.
editor by czh 2023-02-21
China SLGR JNZ087 Honest Manufacturer SWC Series Steel Material Hollow Cardan Driving Shaft Universal Coupling Customized Support drive shaft coupler
Problem: New
Guarantee: 6 Months
Relevant Industries: Farms, Construction works , Vitality & Mining, Production Plant, Foods & Beverage Factory
Showroom Location: Indonesia, Italy
Online video outgoing-inspection: Supplied
Machinery Take a look at Report: Supplied
Marketing and advertising Type: Common Item
Guarantee of main factors: 6 Months
Core Factors: Bearing
Composition: Spline
Content: metal, Steel
Coatings: Black Oxide
Torque Ability: Personalized-Creating
Design Amount: SWC
Product identify: Cardan Shaft
Software: Industrial Gear
Process: Forging 16433008 Front Rear Travel Axle Shaft For BMW & Mercedes benz W164 ML W166 W204 W203 W211 W221 X5 E70 R50 F20 F35 E90 thank you.
one.Design Companies
We have our personal layout staff. Our main designer has above 40 years’ encounter in cardan shaft relating to merchandise style and advancement. If you have any requirements for your new item or would like to make additional enhancements, we are here to provide our assist.
two.Merchandise preocess
raw resources → Cutting → Forging→Rough machining→Shot blasting→Heat treatment→Testing→Fashioning→Cleaning→Assembly→Packing→Shipping
three.Samples Procedure
We could build the sample in accordance to your need and amend the sample consistently to fulfill your require.
4.Investigation & Growth
We usually investigation the new demands of the marketplace and build the new product
five.Quality Management
Every phase ought to be unique examination by Skilled Workers in accordance to the normal of ISO 9001 and TS 16949.
6.Certification
Must your merchandise demand testing and certification to comply with international specifications? We can organize this impartial, totally identified tests businesses such as SGS, Intertec, Bureau Veritas, Lloyd’s Register or the testing company of your decision.
7.Packaging
Packaging must be strong . All the items in standard export wood circumstance. If you have your unique requirement,like Symbol printed , mark, coloration box… make sure you notify us!
eight.Soon after sale
Any merchandise have good quality dilemma which triggered by us, we will help you resolve in time.
9.Shipping and delivery
– Making use of your own freight-forwarder
– FOB to a port in China
– CIF to a port in close proximity to you
No matter whether you have your very own freight-forwarder or you want us to arrange shipment whether or not you require shipping FOB to a port in China or CIF to a port close to you, we are happy to quotation and source whichever you decide on.
You are warmly welcome to go to our factory. If you have other needs, Large Good quality Cheap Cost Blend Harvester Accessories Transmission Iv Shaft Equipment For Vehicles remember to really feel totally free to contact us at any time.
The Benefits of Spline Couplings for Disc Brake Mounting Interfaces
Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.
Disc brake mounting interfaces are splined
There are two common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
Aerospace applications
The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
High-performance vehicles
A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are two basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are three types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
Disc brake mounting interfaces
A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of two different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.
editor by czh 2023-02-21
China cardan pto shaft drive shaft coupling
Error:获取返回内容失败,
Your session has expired. Please reauthenticate.
The Functions of Splined Shaft Bearings
Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.
Functions
Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
Types
There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the two types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
Manufacturing methods
There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from two separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is one method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is one method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to one another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, two precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
Applications
The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These three factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.
editor by czh 2023-02-15
China agricultural yoke clutch rotavator spline cross joint cardan shaft drive shaft bearing
Situation: New
Guarantee: 2 many years
Relevant Industries: Resorts, Garment Stores, Constructing Content Stores, Machinery Restore Stores, Food & Beverage Factory, House Use, Retail
Fat (KG): 21 KG
Showroom Spot: Egypt, United Kingdom, United States, Saudi Arabia, Indonesia, India
Online video outgoing-inspection: Presented
Equipment Check Report: Offered
Marketing and advertising Sort: Regular Solution
Variety: Shafts
Use: Tractor,Rotary Cultivator,Planter Machine , Entrance Air Suspension Compressor For W211 W220 Air Pump W220 A21132
Comprehensive Images Other Merchandise Our Firm Goals of International Sourcing at PAPAYA:Reduce getting costsIncrease the qualityReduce risks inside the supply chainSecure improvements of top suppliers throughout the world
Packing & Shipping and delivery Our most skilled packagingTransport of massive trucks to the seaportAnd intercontinental transportation cooperationOur Support1. OEM Manufacturing welcome: Product, Package… 2. Sample order 3. We will reply you for your inquiry in 24 hrs.4. following sending, we will track the products for you after every single 2 days, until finally you get the merchandise. When you got the items, take a look at them, and give me a comments.If you have any queries about the difficulty, Customized NMRV Turbine AC Electric powered Bevel Velocity Variator Reducer Worm Gear Gearbox Motor speak to with us, we will provide the fix way for you.
FAQQ1. What is your phrases of packing?A: Generally, we pack our items in neutral Picket containers and carton,steel hob.. If you have lawfully registered patent, we can pack the merchandise in your branded following receiving your authorization letters. Q2. What is your conditions of payment?A: T/T thirty% as deposit, and 70% before shipping and delivery. We are going to present you the pictures of the merchandise and packages ahead of you pay out the harmony. Q3. What is your terms of shipping?A: EXW, FOB, CFR, CIF, DDU. This fall. How about your delivery time?A: Normally, it will take 5 to thirty days after receiving your progress payment. The particular shipping time relies upon on the items and the quantity of your purchase. Q5. Can you create according to the samples?A: Yes, we can produce by your samples or complex drawings. We can construct the molds and fixtures. Q6. What is your sample policy?A: We can source the sample if we have completely ready components in stock, but the customers have to pay the sample expense and the courier expense.Q7. Do you take a look at all your merchandise ahead of supply? A: Sure, NMRV050 nrv kind double enter worm gearbox mechanical gearbox we have a hundred% test prior to delivery Q8: How do you make our business lengthy-phrase and very good relationship?A:1. We maintain good high quality and aggressive cost to make certain our customers benefit 2. We regard each consumer as our good friend and we sincerely do business and make buddies with them, no subject in which they come from.
The Benefits of Spline Couplings for Disc Brake Mounting Interfaces
Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.
Disc brake mounting interfaces are splined
There are two common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
Aerospace applications
The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
High-performance vehicles
A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are two basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are three types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
Disc brake mounting interfaces
A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of two different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.
editor by czh 2023-02-15
China Flexible Cardan Shaft Made with Spline Universal Joint wholesaler
Merchandise Description
Telescopic short cardan shaft Coupling(SWP-B)
SWP split bearing housing cross shaft common coupling is suitable for equipment,lifting and transportation equipment and other hefty machinery. Connecting 2 axes whose axes are not on the exact same straight line. The rotation diameter is 160-640mm. The nominal torque Tn=sixteen-1250Kn·m,axis angle A-F kind β≤25°.G type≤5°. SWP universal joint coupling is related to the other mechanical components by higher power bolts and self locking nuts. The torque is transmitted via the flange stop important and the friction among the flange.
♦SWP B Type Cardan Shaft Fundamental Parameter And Main Dimension(JB/T3241-1991)
Type | Tactical diameter D mm |
Nominal torque Tn kN·m |
Fatique torque Tf kN·m |
Axis angle β (°) |
Stretch size S mm |
Dimension(mm) | Rotary inertia kg·m2 |
Mass kg |
|||||||||
L | D1 js11 |
D2 H7 |
D3 | E | E1 | B×h | h1 | L1 | n-d | ||||||||
SWP160B | one hundred sixty | sixteen | 8 | ≤10 | fifty | 585 | a hundred and forty | ninety five | 114 | 15 | 4 | 20×12 | six | eighty five | six-thirteen | .14 | forty four |
SWP180B | a hundred and eighty | twenty | ten | ≤10 | sixty | 640 | a hundred and fifty five | one zero five | 121 | 15 | 4 | 24×14 | seven | 95 | six-fifteen | .23 | 54 |
SWP200B | 200 | 31.5 | 16 | ≤10 | 70 | 730 | 175 | one hundred twenty five | 17 | 17 | five | 28×16 | 8 | a hundred and ten | 8-15 | .36 | seventy five |
SWP225B | 225 | forty | 20 | ≤10 | 76 | 830 | 196 | 135 | 152 | twenty | 5 | 32×18 | 9 | a hundred thirty | eight-seventeen | .61 | 108 |
SWP250B | 250 | sixty three | 31.five | ≤10 | eighty | 860 | 218 | one hundred fifty | 168 | 25 | five | 40×25 | 12.five | 135 | 8-19 | .98 | 138 |
SWP285B | 285 | ninety | forty five | ≤10 | one hundred | 1000 | 245 | 170 | 194 | 27 | seven | 40×30 | fifteen | a hundred and fifty | eight-21 | 2.twelve | 229 |
SWP315B | 315 | a hundred and forty | sixty three | ≤10 | a hundred and ten | 1120 | 280 | 185 | 219 | 32 | seven | 40×30 | fifteen | a hundred and seventy | 10-23 | three.eighty | 309 |
SWP350B | 350 | 180 | 90 | ≤10 | a hundred and twenty | 1230 | 310 | 210 | 245 | 35 | eight | 50×32 | 16 | 185 | 10-23 | six.60 | 408 |
SWP390B | 390 | 250 | 112 | ≤10 | a hundred and twenty | 1310 | 345 | 235 | 273 | 40 | eight | 70×36 | 18 | 205 | ten-25 | 10.50 | 539 |
SWP435B | 435 | 355 | a hundred and sixty | ≤10 | a hundred and fifty | 1555 | 385 | 255 | 299 | forty two | 10 | 80×40 | 20 | 235 | 16-28 | 22.39 | 903 |
SWP480B | 480 | 450 | 224 | ≤10 | a hundred and seventy | 17440 | 425 | 275 | 351 | 47 | twelve | 90×45 | 22.five | 265 | sixteen-31 | 38.21 | 1243 |
SWP550B | 550 | 710 | 315 | ≤10 | one hundred ninety | 1905 | 492 | 320 | 402 | 50 | twelve | 100×45 | 22.five | 290 | 16-31 | sixty one.00 | 1643 |
SWP600B | 600 | 1000 | five hundred | ≤10 | 210 | 2600 | 544 | 380 | 450 | 55 | 15 | 90×55 | 27.5 | 360 | 22-34 | ninety nine.thirteen | 2335 |
SWP640B | 640 | 1250 | 630 | ≤10 | 230 | 2780 | 575 | 385 | 480 | sixty | 15 | 100×60 | thirty | 385 | eighteen-38 | one hundred seventy.21 | 27.20 |
♦Product Present
♦Other Products List
Transmission Machinery Components Identify |
Design |
Universal Coupling | WS,WSD,WSP |
Cardan Shaft | SWC,SWP,SWZ |
Tooth Coupling | CL,CLZ,GCLD,GIICL, GICL,NGCL,GGCL,GCLK |
Disc Coupling | JMI,JMIJ,JMII,JMIIJ |
High Flexible Coupling | LM |
Chain Coupling | GL |
Jaw Coupling | LT |
Grid Coupling | JS |
♦Our Company
Our firm supplies different varieties of merchandise. Higher top quality and realistic cost. We adhere to the theory of “good quality first, service 1st, constant enhancement and innovation to satisfy the clients” for the management and “zero defect, zero grievances” as the top quality objective. To excellent our service, we supply the merchandise with excellent quality at the sensible value.
Welcome to customize products from our factory and you should offer your design drawings or make contact with us if you need to have other specifications.
♦Our Solutions
1.Layout Solutions
Our layout team has experience in cardan shaft relating to solution design and style and growth. If you have any wants for your new solution or desire to make further enhancements, we are right here to offer you our help.
2.Merchandise Services
raw supplies → Cutting → Forging →Rough machining →Shot blasting →Heat remedy →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping
three.Samples Process
We could create the sample according to your necessity and amend the sample constantly to satisfy your need to have.
four.Study & Development
We usually study the new requirements of the market and develop the new design when there is new vehicles in the marketplace.
5.Good quality Control
Each and every stage need to be particular take a look at by Specialist Personnel in accordance to the normal of ISO9001 and TS16949.
♦FAQ
Q 1: Are you trading organization or maker?
A: We are a professional maker specializing in production
various collection of couplings.
Q 2:Can you do OEM?
Of course, we can. We can do OEM & ODM for all the customers with customized artworks of PDF or AI structure.
Q 3:How prolonged is your shipping time?
Generally it is twenty-30 days if the merchandise are not in stock. It is in accordance to amount.
Q 4: Do you give samples ? Is it totally free or extra ?
Of course, we could supply the sample but not for free of charge.In fact we have a very great value theory, when you make the bulk purchase then expense of sample will be deducted.
Q 5: How prolonged is your warranty?
A: Our Warranty is 12 thirty day period beneath standard circumstance.
Q 6: What is the MOQ?
A:Generally our MOQ is 1pcs.
Q 7: Do you have inspection procedures for coupling ?
A:100% self-inspection just before packing.
Q 8: Can I have a visit to your factory before the buy?
A: Confident,welcome to check out our factory.
Q 9: What’s your payment?
A:1) T/T. 2) L/C
♦Speak to Us
Net: huadingcoupling
Incorporate: No.1 HangZhou Street,Chengnan park,HangZhou Metropolis,ZheJiang Province,China
US $74.85-149,700 / Piece | |
1 Piece (Min. Order) |
###
Standard Or Nonstandard: | Standard |
---|---|
Shaft Hole: | as Your Requirement |
Torque: | as Your Requirement |
Bore Diameter: | as Your Requirement |
Speed: | as Your Requirement |
Structure: | Flexible |
###
Customization: |
Available
|
---|
###
Type | Tactical diameter D mm |
Nominal torque Tn kN·m |
Fatique torque Tf kN·m |
Axis angle β (°) |
Stretch length S mm |
Size(mm) | Rotary inertia kg·m2 |
Mass kg |
|||||||||
L | D1 js11 |
D2 H7 |
D3 | E | E1 | B×h | h1 | L1 | n-d | ||||||||
SWP160B | 160 | 16 | 8 | ≤10 | 50 | 585 | 140 | 95 | 114 | 15 | 4 | 20×12 | 6 | 85 | 6-13 | 0.14 | 44 |
SWP180B | 180 | 20 | 10 | ≤10 | 60 | 640 | 155 | 105 | 121 | 15 | 4 | 24×14 | 7 | 95 | 6-15 | 0.23 | 54 |
SWP200B | 200 | 31.5 | 16 | ≤10 | 70 | 730 | 175 | 125 | 17 | 17 | 5 | 28×16 | 8 | 110 | 8-15 | 0.36 | 75 |
SWP225B | 225 | 40 | 20 | ≤10 | 76 | 830 | 196 | 135 | 152 | 20 | 5 | 32×18 | 9 | 130 | 8-17 | 0.61 | 108 |
SWP250B | 250 | 63 | 31.5 | ≤10 | 80 | 860 | 218 | 150 | 168 | 25 | 5 | 40×25 | 12.5 | 135 | 8-19 | 0.98 | 138 |
SWP285B | 285 | 90 | 45 | ≤10 | 100 | 1000 | 245 | 170 | 194 | 27 | 7 | 40×30 | 15 | 150 | 8-21 | 2.12 | 229 |
SWP315B | 315 | 140 | 63 | ≤10 | 110 | 1120 | 280 | 185 | 219 | 32 | 7 | 40×30 | 15 | 170 | 10-23 | 3.80 | 309 |
SWP350B | 350 | 180 | 90 | ≤10 | 120 | 1230 | 310 | 210 | 245 | 35 | 8 | 50×32 | 16 | 185 | 10-23 | 6.60 | 408 |
SWP390B | 390 | 250 | 112 | ≤10 | 120 | 1310 | 345 | 235 | 273 | 40 | 8 | 70×36 | 18 | 205 | 10-25 | 10.50 | 539 |
SWP435B | 435 | 355 | 160 | ≤10 | 150 | 1555 | 385 | 255 | 299 | 42 | 10 | 80×40 | 20 | 235 | 16-28 | 22.39 | 903 |
SWP480B | 480 | 450 | 224 | ≤10 | 170 | 17440 | 425 | 275 | 351 | 47 | 12 | 90×45 | 22.5 | 265 | 16-31 | 38.21 | 1243 |
SWP550B | 550 | 710 | 315 | ≤10 | 190 | 1905 | 492 | 320 | 402 | 50 | 12 | 100×45 | 22.5 | 290 | 16-31 | 61.00 | 1643 |
SWP600B | 600 | 1000 | 500 | ≤10 | 210 | 2600 | 544 | 380 | 450 | 55 | 15 | 90×55 | 27.5 | 360 | 22-34 | 99.13 | 2335 |
SWP640B | 640 | 1250 | 630 | ≤10 | 230 | 2780 | 575 | 385 | 480 | 60 | 15 | 100×60 | 30 | 385 | 18-38 | 170.21 | 27.20 |
###
Transmission Machinery Parts Name |
Model |
Universal Coupling | WS,WSD,WSP |
Cardan Shaft | SWC,SWP,SWZ |
Tooth Coupling | CL,CLZ,GCLD,GIICL, GICL,NGCL,GGCL,GCLK |
Disc Coupling | JMI,JMIJ,JMII,JMIIJ |
High Flexible Coupling | LM |
Chain Coupling | GL |
Jaw Coupling | LT |
Grid Coupling | JS |
US $74.85-149,700 / Piece | |
1 Piece (Min. Order) |
###
Standard Or Nonstandard: | Standard |
---|---|
Shaft Hole: | as Your Requirement |
Torque: | as Your Requirement |
Bore Diameter: | as Your Requirement |
Speed: | as Your Requirement |
Structure: | Flexible |
###
Customization: |
Available
|
---|
###
Type | Tactical diameter D mm |
Nominal torque Tn kN·m |
Fatique torque Tf kN·m |
Axis angle β (°) |
Stretch length S mm |
Size(mm) | Rotary inertia kg·m2 |
Mass kg |
|||||||||
L | D1 js11 |
D2 H7 |
D3 | E | E1 | B×h | h1 | L1 | n-d | ||||||||
SWP160B | 160 | 16 | 8 | ≤10 | 50 | 585 | 140 | 95 | 114 | 15 | 4 | 20×12 | 6 | 85 | 6-13 | 0.14 | 44 |
SWP180B | 180 | 20 | 10 | ≤10 | 60 | 640 | 155 | 105 | 121 | 15 | 4 | 24×14 | 7 | 95 | 6-15 | 0.23 | 54 |
SWP200B | 200 | 31.5 | 16 | ≤10 | 70 | 730 | 175 | 125 | 17 | 17 | 5 | 28×16 | 8 | 110 | 8-15 | 0.36 | 75 |
SWP225B | 225 | 40 | 20 | ≤10 | 76 | 830 | 196 | 135 | 152 | 20 | 5 | 32×18 | 9 | 130 | 8-17 | 0.61 | 108 |
SWP250B | 250 | 63 | 31.5 | ≤10 | 80 | 860 | 218 | 150 | 168 | 25 | 5 | 40×25 | 12.5 | 135 | 8-19 | 0.98 | 138 |
SWP285B | 285 | 90 | 45 | ≤10 | 100 | 1000 | 245 | 170 | 194 | 27 | 7 | 40×30 | 15 | 150 | 8-21 | 2.12 | 229 |
SWP315B | 315 | 140 | 63 | ≤10 | 110 | 1120 | 280 | 185 | 219 | 32 | 7 | 40×30 | 15 | 170 | 10-23 | 3.80 | 309 |
SWP350B | 350 | 180 | 90 | ≤10 | 120 | 1230 | 310 | 210 | 245 | 35 | 8 | 50×32 | 16 | 185 | 10-23 | 6.60 | 408 |
SWP390B | 390 | 250 | 112 | ≤10 | 120 | 1310 | 345 | 235 | 273 | 40 | 8 | 70×36 | 18 | 205 | 10-25 | 10.50 | 539 |
SWP435B | 435 | 355 | 160 | ≤10 | 150 | 1555 | 385 | 255 | 299 | 42 | 10 | 80×40 | 20 | 235 | 16-28 | 22.39 | 903 |
SWP480B | 480 | 450 | 224 | ≤10 | 170 | 17440 | 425 | 275 | 351 | 47 | 12 | 90×45 | 22.5 | 265 | 16-31 | 38.21 | 1243 |
SWP550B | 550 | 710 | 315 | ≤10 | 190 | 1905 | 492 | 320 | 402 | 50 | 12 | 100×45 | 22.5 | 290 | 16-31 | 61.00 | 1643 |
SWP600B | 600 | 1000 | 500 | ≤10 | 210 | 2600 | 544 | 380 | 450 | 55 | 15 | 90×55 | 27.5 | 360 | 22-34 | 99.13 | 2335 |
SWP640B | 640 | 1250 | 630 | ≤10 | 230 | 2780 | 575 | 385 | 480 | 60 | 15 | 100×60 | 30 | 385 | 18-38 | 170.21 | 27.20 |
###
Transmission Machinery Parts Name |
Model |
Universal Coupling | WS,WSD,WSP |
Cardan Shaft | SWC,SWP,SWZ |
Tooth Coupling | CL,CLZ,GCLD,GIICL, GICL,NGCL,GGCL,GCLK |
Disc Coupling | JMI,JMIJ,JMII,JMIIJ |
High Flexible Coupling | LM |
Chain Coupling | GL |
Jaw Coupling | LT |
Grid Coupling | JS |
The Different Types of Splines in a Splined Shaft
A splined shaft is a machine component with internal and external splines. The splines are formed in four different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right one for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.
Involute splines
Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.
Parallel splines
Parallel splines are formed on a splined shaft by putting one or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
Serrated splines
A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.
Ball splines
The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is one of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least one ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to one another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the two shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
Sector no-go gage
A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has two groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other two pressure angles. It is often used when the splined shaft material is harder than usual.
editor by czh 2022-12-13