Product description Hydraulic core drilling rig is mainly used for geological general investigation and exploration,kinds of hole in concrete structure,road and tall building foundation exploration,river levees,subgrade grouting hole drilling and direct grouting,civil wells and earth temperature central air conditioner,etc.
Feature
Engine:Feed by hydraulic cylinder,the drilling efficiency is higher and it can save labor.
Drill rod:53×59 drilling rod adopted,high rigidity and strong delivery torque.
Spindle:Vertical spindle are fixed by 4 groups of bearing to ensure that the rotary machine is rigid enough for gravel layer and other complex geoloical conditions.
Mud pump:Equip mud pump with flow 160L/min,save cost and also make the structure compact
Concentrated handle, small footprint,light weight, strong decomposition, easy to move.
Technical parameter
The whole machine parameters
Model
YG130Y/130YY
YG180YG/180YYG
YG200Y/200YY
Drill hole depth
130m
180m
200m
Maximum opening diameter
Φ75-Φ220mm
Φ75-Φ220mm
Φ75-Φ325mm
Final hole diameter
Φ75mm
Φ75mm
Φ75mm
Take the initiative to drill pipe
53/59*4200mm
53/59*4200mm
53/59*4200mm
Drill pipe diameter
Φ42-60mm
Φ42-60mm
Φ42-60mm
Borehole inclination
90°- 75°
90°- 75°
90°- 75°
Power(diesel engine)
13.2/2200kw/r/min
13.2/2200kw/r/min
15/2200kw/r/min
Size
2.4*0.8*1.4m
2.4*0.8*1.3m
2.7*0.9*1.5
Vertical shaft
Vertical spindle speed
142,285,570r/min
130,480,730,1045r/min
64,28,287,557r/min
Vertical stroke
450mm
450mm
450mm
Hoist
Single rope lift
2000
2100
2500
Single rope winding speed
0.41-1.64m/s
0.35-2.23m/s
0.12-0.95m/s
Drum diameter
Φ140mm
Φ140mm
Φ140mm
Diameter of wire rope
Φ9.3mm
Φ9.3mm
Φ13mm
Wire rope capacity
27m
27m
35m
Rig
Rated load
18t
18t
18t
Effective height
6.5m
6.5m
6.5m
Tower leg specifications
Φ73mm
Φ73mm
Φ89mm
Mud pump
Model
BW95
BW95
BW145
Flow
95L/min
95L/min
145L/min
Maximum pressure
1.2Mpa
1.2Mpa
2Mpa
Reciprocating frequency
93times/min
93times/min
93times/min
Suction pipe diameter
Φ51mm*4.5m
Φ51mm*4.5m
Φ51mm*4.5m
How to Choose the Right Worm Shaft
You might be curious to know how to choose the right Worm Shaft. In this article, you will learn about worm modules with the same pitch diameter, Double-thread worm gears, and Self-locking worm drive. Once you have chosen the proper Worm Shaft, you will find it easier to use the equipment in your home. There are many advantages to selecting the right Worm Shaft. Read on to learn more.
Concave shape
The concave shape of a worm’s shaft is an important characteristic for the design of a worm gearing. Worm gearings can be found in a wide range of shapes, and the basic profile parameters are available in professional and firm literature. These parameters are used in geometry calculations, and a selection of the right worm gearing for a particular application can be based on these requirements. The thread profile of a worm is defined by the tangent to the axis of its main cylinder. The teeth are shaped in a straight line with a slightly concave shape along the sides. It resembles a helical gear, and the profile of the worm itself is straight. This type of gearing is often used when the number of teeth is greater than a certain limit. The geometry of a worm gear depends on the type and manufacturer. In the earliest days, worms were made similar to simple screw threads, and could be chased on a lathe. During this time, the worm was often made with straight-sided tools to produce threads in the acme plane. Later, grinding techniques improved the thread finish and reduced distortions resulting from hardening. When a worm gearing has multiple teeth, the pitch angle is a key parameter. A greater pitch angle increases efficiency. If you want to increase the pitch angle without increasing the number of teeth, you can replace a worm pair with a different number of thread starts. The helix angle must increase while the center distance remains constant. A higher pitch angle, however, is almost never used for power transmissions. The minimum number of gear teeth depends on the angle of pressure at zero gearing correction. The diameter of the worm is d1, and is based on a known module value, mx or mn. Generally, larger values of m are assigned to larger modules. And a smaller number of teeth is called a low pitch angle. In case of a low pitch angle, spiral gearing is used. The pitch angle of the worm gear is smaller than 10 degrees.
Multiple-thread worms
Multi-thread worms can be divided into sets of one, two, or 4 threads. The ratio is determined by the number of threads on each set and the number of teeth on the apparatus. The most common worm thread counts are 1,2,4, and 6. To find out how many threads you have, count the start and end of each thread and divide by two. Using this method, you will get the correct thread count every time. The tangent plane of a worm’s pitch profile changes as the worm moves lengthwise along the thread. The lead angle is greatest at the throat, and decreases on both sides. The curvature radius r” varies proportionally with the worm’s radius, or pitch angle at the considered point. Hence, the worm leads angle, r, is increased with decreased inclination and decreases with increasing inclination. Multi-thread worms are characterized by a constant leverage between the gear surface and the worm threads. The ratio of worm-tooth surfaces to the worm’s length varies, which enables the wormgear to be adjusted in the same direction. To optimize the gear contact between the worm and gear, the tangent relationship between the 2 surfaces is optimal. The efficiency of worm gear drives is largely dependent on the helix angle of the worm. Multiple thread worms can improve the efficiency of the worm gear drive by as much as 25 to 50% compared to single-thread worms. Worm gears are made of bronze, which reduces friction and heat on the worm’s teeth. A specialized machine can cut the worm gears for maximum efficiency.
Double-thread worm gears
In many different applications, worm gears are used to drive a worm wheel. These gears are unique in that the worm cannot be reversed by the power applied to the worm wheel. Because of their self-locking properties, they can be used to prevent reversing motion, although this is not a dependable function. Applications for worm gears include hoisting equipment, elevators, chain blocks, fishing reels, and automotive power steering. Because of their compact size, these gears are often used in applications with limited space. Worm sets typically exhibit more wear than other types of gears, and this means that they require more limited contact patterns in new parts. Worm wheel teeth are concave, making it difficult to measure tooth thickness with pins, balls, and gear tooth calipers. To measure tooth thickness, however, you can measure backlash, a measurement of the spacing between teeth in a gear. Backlash can vary from 1 worm gear to another, so it is important to check the backlash at several points. If the backlash is different in 2 places, this indicates that the teeth may have different spacing. Single-thread worm gears provide high speed reduction but lower efficiency. A multi-thread worm gear can provide high efficiency and high speed, but this comes with a trade-off in terms of horsepower. However, there are many other applications for worm gears. In addition to heavy-duty applications, they are often used in light-duty gearboxes for a variety of functions. When used in conjunction with double-thread worms, they allow for a substantial speed reduction in 1 step. Stainless-steel worm gears can be used in damp environments. The worm gear is not susceptible to rust and is ideal for wet and damp environments. The worm wheel’s smooth surfaces make cleaning them easy. However, they do require lubricants. The most common lubricant for worm gears is mineral oil. This lubricant is designed to protect the worm drive.
Self-locking worm drive
A self-locking worm drive prevents the platform from moving backward when the motor stops. A dynamic self-locking worm drive is also possible but does not include a holding brake. This type of self-locking worm drive is not susceptible to vibrations, but may rattle if released. In addition, it may require an additional brake to keep the platform from moving. A positive brake may be necessary for safety. A self-locking worm drive does not allow for the interchangeability of the driven and driving gears. This is unlike spur gear trains that allow both to interchange positions. In a self-locking worm drive, the driving gear is always engaged and the driven gear remains stationary. The drive mechanism locks automatically when the worm is operated in the wrong manner. Several sources of information on self-locking worm gears include the Machinery’s Handbook. A self-locking worm drive is not difficult to build and has a great mechanical advantage. In fact, the output of a self-locking worm drive cannot be backdriven by the input shaft. DIYers can build a self-locking worm drive by modifying threaded rods and off-the-shelf gears. However, it is easier to make a ratchet and pawl mechanism, and is significantly less expensive. However, it is important to understand that you can only drive 1 worm at a time. Another advantage of a self-locking worm drive is the fact that it is not possible to interchange the input and output shafts. This is a major benefit of using such a mechanism, as you can achieve high gear reduction without increasing the size of the gear box. If you’re thinking about buying a self-locking worm gear for a specific application, consider the following tips to make the right choice. An enveloping worm gear set is best for applications requiring high accuracy and efficiency, and minimum backlash. Its teeth are shaped differently, and the worm’s threads are modified to increase surface contact. They are more expensive to manufacture than their single-start counterparts, but this type is best for applications where accuracy is crucial. The worm drive is also a great option for heavy trucks because of their large size and high-torque capacity.
Main hydraulic pump, valve and motor are all adopted from famous international brands. Batholith is tyre-drawing (with turning device) or steel track loptional),with hydraulic support device, mast adopted hydraulic powered lft/down, which can be folded to store and transport, with touchdown function, hydraulic system adopted sensitive load control, with high-position operation platform and orifice operation platform. Drill head feeding adopts double -speed driving device for the chain of the oil tank, long-range feeding system, single-motor driving, with 2 grades gear-box and hydraulic operated stepless shift gears. Equipped with high supporter and low guider devices, orifice with hydraulic holder.
Model
DX-5C full hydraulic
Diesel Engine
Model
cummins 6CTA8.3-C195
Power
145kW
Speed
1900rpm
Drilling Capacity
BQ
1500m
NQ
1300m
HQ
1000m
PQ
680m
Rotator Capacity
RPM
Two Shifts/ Stepless 0-1145rpm
Max.Torque
4650N·m
Hold Diameter
121mm
Max.Lifting Capacity of Spindle
150kN
Max.Feeding Power
75kN
Capacity of Main Hoist
Hoisting Force(singlee wire)
77kN
Steel Wire Diameter
18mm
Steel Wire Length
60m
Capacity of Steel Wire Hoist
Hoisting Force(singlee wire)
12kN (Bare drum)
Steel Wire Diameter
6mm
Steel Wire Length
1500m
Mast
Mast Height
12m
Mast Adjusting Angle
0°-90°
Drilling Angle
45°-90°
Feeding Stroke
3800mm
Slippage Stroke
1100mm
Other
Weight
10000kg
Dimensions(L×W×H)
6250×2200×2730mm
Transport Way
Tyre
Mud Pump
Model
BW250
Foot damp
Clamping Scope
55.5-117.5 mm(standard hole size Φ154mm)
The Four Basic Components of a Screw Shaft
There are 4 basic components of a screw shaft: the Head, the Thread angle, and the Threaded shank. These components determine the length, shape, and quality of a screw. Understanding how these components work together can make purchasing screws easier. This article will cover these important factors and more. Once you know these, you can select the right type of screw for your project. If you need help choosing the correct type of screw, contact a qualified screw dealer.
Thread angle
The angle of a thread on a screw shaft is the difference between the 2 sides of the thread. Threads that are unified have a 60 degree angle. Screws have 2 parts: a major diameter, also known as the screw’s outside diameter, and a minor diameter, or the screw’s root diameter. A screw or nut has a major diameter and a minor diameter. Each has its own angle, but they all have 1 thing in common – the angle of thread is measured perpendicularly to the screw’s axis. The pitch of a screw depends on the helix angle of the thread. In a single-start screw, the lead is equal to the pitch, and the thread angle of a multiple-start screw is based on the number of starts. Alternatively, you can use a square-threaded screw. Its square thread minimizes the contact surface between the nut and the screw, which improves efficiency and performance. A square thread requires fewer motors to transfer the same load, making it a good choice for heavy-duty applications. A screw thread has 4 components. First, there is the pitch. This is the distance between the top and bottom surface of a nut. This is the distance the thread travels in a full revolution of the screw. Next, there is the pitch surface, which is the imaginary cylinder formed by the average of the crest and root height of each tooth. Next, there is the pitch angle, which is the angle between the pitch surface and the gear axis.
Head
There are 3 types of head for screws: flat, round, and hexagonal. They are used in industrial applications and have a flat outer face and a conical interior. Some varieties have a tamper-resistant pin in the head. These are usually used in the fabrication of bicycle parts. Some are lightweight, and can be easily carried from 1 place to another. This article will explain what each type of head is used for, and how to choose the right 1 for your screw. The major diameter is the largest diameter of the thread. This is the distance between the crest and the root of the thread. The minor diameter is the smaller diameter and is the distance between the major and minor diameters. The minor diameter is half the major diameter. The major diameter is the upper surface of the thread. The minor diameter corresponds to the lower extreme of the thread. The thread angle is proportional to the distance between the major and minor diameters. Lead screws are a more affordable option. They are easier to manufacture and less expensive than ball screws. They are also more efficient in vertical applications and low-speed operations. Some types of lead screws are also self-locking, and have a high coefficient of friction. Lead screws also have fewer parts. These types of screw shafts are available in various sizes and shapes. If you’re wondering which type of head of screw shaft to buy, this article is for you.
Threaded shank
Wood screws are made up of 2 parts: the head and the shank. The shank is not threaded all the way up. It is only partially threaded and contains the drive. This makes them less likely to overheat. Heads on wood screws include Oval, Round, Hex, Modified Truss, and Flat. Some of these are considered the “top” of the screw. Screws come in many sizes and thread pitches. An M8 screw has a 1.25-mm thread pitch. The pitch indicates the distance between 2 identical threads. A pitch of 1 is greater than the other. The other is smaller and coarse. In most cases, the pitch of a screw is indicated by the letter M followed by the diameter in millimetres. Unless otherwise stated, the pitch of a screw is greater than its diameter. Generally, the shank diameter is smaller than the head diameter. A nut with a drilled shank is commonly used. Moreover, a cotter pin nut is similar to a castle nut. Internal threads are usually created using a special tap for very hard metals. This tap must be followed by a regular tap. Slotted machine screws are usually sold packaged with nuts. Lastly, studs are often used in automotive and machine applications. In general, screws with a metric thread are more difficult to install and remove. Fortunately, there are many different types of screw threads, which make replacing screws a breeze. In addition to these different sizes, many of these screws have safety wire holes to keep them from falling. These are just some of the differences between threaded screw and non-threaded. There are many different types of screw threads, and choosing the right 1 will depend on your needs and your budget.
Point
There are 3 types of screw heads with points: cone, oval, and half-dog. Each point is designed for a particular application, which determines its shape and tip. For screw applications, cone, oval, and half-dog points are common. Full dog points are not common, and they are available in a limited number of sizes and lengths. According to ASTM standards, point penetration contributes as much as 15% of the total holding power of the screw, but a cone-shaped point may be more preferred in some circumstances. There are several types of set screws, each with its own advantage. Flat-head screws reduce indentation and frequent adjustment. Dog-point screws help maintain a secure grip by securing the collar to the screw shaft. Cup-point set screws, on the other hand, provide a slip-resistant connection. The diameter of a cup-point screw is usually half of its shaft diameter. If the screw is too small, it may slack and cause the screw collar to slip. The UNF series has a larger area for tensile stress than coarse threads and is less prone to stripping. It’s used for external threads, limited engagement, and thinner walls. When using a UNF, always use a standard tap before a specialized tap. For example, a screw with a UNF point is the same size as a type C screw but with a shorter length.
Spacer
A spacer is an insulating material that sits between 2 parts and centers the shaft of a screw or other fastener. Spacers come in different sizes and shapes. Some of them are made of Teflon, which is thin and has a low coefficient of friction. Other materials used for spacers include steel, which is durable and works well in many applications. Plastic spacers are available in various thicknesses, ranging from 4.6 to 8 mm. They’re suitable for mounting gears and other items that require less contact surface. These devices are used for precision fastening applications and are essential fastener accessories. They create clearance gaps between the 2 joined surfaces or components and enable the screw or bolt to be torqued correctly. Here’s a quick guide to help you choose the right spacer for the job. There are many different spacers available, and you should never be without one. All you need is a little research and common sense. And once you’re satisfied with your purchase, you can make a more informed decision. A spacer is a component that allows the components to be spaced appropriately along a screw shaft. This tool is used to keep space between 2 objects, such as the spinning wheel and an adjacent metal structure. It also helps ensure that a competition game piece doesn’t rub against an adjacent metal structure. In addition to its common use, spacers can be used in many different situations. The next time you need a spacer, remember to check that the hole in your screw is threaded.
Nut
A nut is a simple device used to secure a screw shaft. The nut is fixed on each end of the screw shaft and rotates along its length. The nut is rotated by a motor, usually a stepper motor, which uses beam coupling to accommodate misalignments in the high-speed movement of the screw. Nuts are used to secure screw shafts to machined parts, and also to mount bearings on adapter sleeves and withdrawal sleeves. There are several types of nut for screw shafts. Some have radial anti-backlash properties, which prevent unwanted radial clearances. In addition, they are designed to compensate for thread wear. Several nut styles are available, including anti-backlash radial nuts, which have a spring that pushes down on the nut’s flexible fingers. Axial anti-backlash nuts also provide thread-locking properties. To install a ball nut, you must first align the tangs of the ball and nut. Then, you must place the adjusting nut on the shaft and tighten it against the spacer and spring washer. Then, you need to lubricate the threads, the ball grooves, and the spring washers. Once you’ve installed the nut, you can now install the ball screw assembly. A nut for screw shaft can be made with either a ball or a socket. These types differ from hex nuts in that they don’t need end support bearings, and are rigidly mounted at the ends. These screws can also have internal cooling mechanisms to improve rigidity. In this way, they are easier to tension than rotating screws. You can also buy hollow stationary screws for rotator nut assemblies. This type is great for applications requiring high heat and wide temperature changes, but you should be sure to follow the manufacturer’s instructions.
A.53*59 drilling rod adopted,high rigidity and strong delivery torque. the machine is equipped with national patent technology—taper clutch,with charactristics of strong transmission troque,easy operation and free maintenance. B.for the winch,we use large module planetary gear and add supporting frame,greatly increasing hoisting and braking ability of the winch. C.vertical spindle are fixed by 4 groups of bearings to ensure that the rotary machine is rigid enough for gravel layer and other complex geoloical conditions. D.we are the first 1 to equip mud pump with the flow 160L/min in china so that it will save cost and also make the machine compact,moblie and lightweight.
2.HW-230 Water Well Drilling Rig Applications
HW-230 drilling rig is mainly used for geological general investigation and exploration,road and tall buliding foundation exploration,kinds of hole in concrete structure,river levees,subgrade grouting hole drillling and driect grouting,civil wells and earth temperature entral air-conditioner,etc.
Main Technical Parameter
Drilling depth
30-230m
Max open hole caliber
3
HangZhou CZPT Mining Machinery Co., Ltd.
Please consider the environment before printing this email.
Stiffness and Torsional Vibration of Spline-Couplings
In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.
Stiffness of spline-coupling
The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness. A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns. The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned. Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula. The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach. Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.
Characteristics of spline-coupling
The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications. The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline. Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications. The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost. The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth. Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.
Stiffness of spline-coupling in torsional vibration analysis
This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility. The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components. Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis. The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method. It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.
Effect of spline misalignment on rotor-spline coupling
In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system. An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition. Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load. This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling. Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear. The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.
I. General Introduction The HYDX-5A new model Full Hydraulic Core Drill Rig is developed by HangZhou kudat i Machinery Co., Ltd. with reference of advanced technique of same kind equipment at home and abroad. The drill rig has a reasonable design and superior performance. It is easy to operate and for maintenance.
1. Overall Unit Features: The drill rig adopts full hydraulic driving, travelling with crawlers itself. The drill head is driven by variable motor with function of two-speed mechanical gear shifts, stepless speed change with an advanced and simple structure. The rotator is fed and driven with a system connecting the spindle and oil cylinder with chain. The system has the function, if the piston rods of oil cylinder moving 1 certain distance, the drill head moving will double the distance. The mast could be adjusted within the range of angle 0 to 90 degree for its drilling hole with a low center of gravity and good stability of the overall unit. The rig provides operator with a nice field of vision and wide and comfortable working condition. The rig looks pretty in overall structure and embodies the design thought of people oriented. 1) Reliable Performance Basing on the guideline of purchasing the critical auxiliary equipment internationally, the diesel engine, the hydraulic pump, the main valves, the motors, crawler reducers and key hydraulic spare parts are all adopted famous brands products at home and abroad. 2) High Efficiency With big torque, high power unit allocation and with reasonable structure design and advanced operation method and 6 meters(19.7 feet) length of drill rod, all these guarantee the drill rig’s high operation and performance efficiency. 3) Environmental Protection With lower pollution discharge of diesel engine, professional noise reducing design, the drill rig is suitable for urban operation and performance. 4) Energy Saving Adopting the advanced load sensitive control technique, the drill rig has reduced the power consumption and heat generation to the lowest level. With an elegant outline, compact structure, reliable performance and operation easily, it should be the priority equipment to be selected in the full hydraulic core drill rig of present domestic market.
2. Field of Application HYDX-5A Type Drill Rig is mainly used for slope and straight holes drilling. It could be used for exploration and prospecting of geology, metallurgy, coal, nuke industry, hydrology and for other industries fields. It is a core drilling rig by using CZPT and carbide-tipped bits mainly.
Diesel Engine
Model
Cummins 6CTA8.3-C195 (turbocharged and charge water cooled)
Displacement
8.3L(2.19 US Gallons)
Power
145kW (195HP)
Rated RPM(Factory setting)
2200rpm
Drilling Capacity
BQ
1500 m(4920 feet)
NQ
1300 m(4264 feet)
HQ
1000 m(3280 feet)
PQ
680 m(2230 feet)
Drill Head
Rotation Motor
Double Hydraulic Motors -variable and Reversible Maker:SAUER-DANFOSS
RPM
Two Shifts/ Stepless Change 0-1145 RPM
Ratios
1st 8.776:1 2nd 2.716:1
Head Opener
sidewise sliding way with hydraulic drive
Hydraulic Chuck(PQ)
Hydraulically opened, Disc Spring Clamping, Normally Closed Type Axial Holding Capacity of 222 400 N
Max. Torque
4650 N@m(3427 lbf@ft)
Hold Diameter
121 mm(4.76 inch)
Max. Lifting capacity of Spindle
150 kN(33720 lbf)
Max. Feeding Power
75 kN(16860 lbf)
Primary Pump Package
Axial Piston variable displacement Triplex pump for driving of Drill Head Rotation, Main Hoist, Mud Pump & Line Winch.
Maker: DANFOSS 1st Pump:150LPM at 28.5MPa 2nd Pump:120LPM at 25MPa 3rd Pump:102 LPM at 25MPa
Hydraulic Tank
Capacity
420 L(111 US Gallons)
Capacity of Main Hoist
Hoisting Speed (single wire)
38-70m/min(bare drum)
Hoisting force (single wire)
77kN(17310 lbf)
Steel Wire Diameter
18 mm(0.71 inch)
Steel Wire Length
50 m(164 feet)
Capacity of Wireline Hoist
Hoisting Speed (single wire)
164m/min (bare drum)
Hoisting Force (single wire)
12 kN(2698 lbf) (bare drum)
Steel Wire Diameter
6 mm(0.24 inch)
Steel Wire Length
1500 m(4920 feet)
Mast
Mast Height
11 m(36 feet)
Mast Adjusting Angle
0°_90°
Drilling Angle
45°_90°
Feeding Stroke
3800 mm(150 inch)
Slippage Stroke
1500 mm(59 inch)
Feed Pull
15000kg(33075 lb)
Feed Thrust
7500kg(16538 lb)
Rod Pull
3mor 6m(9.84feet or 19.68feet)
Mud Pump
Type
Reciprocating Pump Triplex Plunger
Model
BW250
Stroke
100mm(3.9 inch)
Output volume
250,145, 90, 52 L/min (66, 38, 24, 14 US Gallons/min)
Discharge pressure
2.5, 4.5, 6.0, 6.0 Mpa (363, 653, 870, 870 psi)
Foot Clamp
Clamping Scope
55.5-117.5 mm(2.19-4.63 inch) through hole 154mm(6.06 inch)
Other
Weight
13000 Kg(28665 lb)
Dimensions (L × W ×H )
5600×2240×2650mm (220×88.2×104.3 inch)
Transport Way
Steel Crawler
Different parts of the drive shaft
The driveshaft is the flexible rod that transmits torque between the transmission and the differential. The term drive shaft may also refer to a cardan shaft, a transmission shaft or a propeller shaft. Parts of the drive shaft are varied and include: The driveshaft is a flexible rod that transmits torque from the transmission to the differential
When the driveshaft in your car starts to fail, you should seek professional help as soon as possible to fix the problem. A damaged driveshaft can often be heard. This noise sounds like “tak tak” and is usually more pronounced during sharp turns. However, if you can’t hear the noise while driving, you can check the condition of the car yourself. The drive shaft is an important part of the automobile transmission system. It transfers torque from the transmission to the differential, which then transfers it to the wheels. The system is complex, but still critical to the proper functioning of the car. It is the flexible rod that connects all other parts of the drivetrain. The driveshaft is the most important part of the drivetrain, and understanding its function will make it easier for you to properly maintain your car. Driveshafts are used in different vehicles, including front-wheel drive, four-wheel drive, and front-engine rear-wheel drive. Drive shafts are also used in motorcycles, locomotives and ships. Common front-engine, rear-wheel drive vehicle configurations are shown below. The type of tube used depends on the size, speed and strength of the drive shaft. The output shaft is also supported by the output link, which has 2 identical supports. The upper part of the drive module supports a large tapered roller bearing, while the opposite flange end is supported by a parallel roller bearing. This ensures that the torque transfer between the differentials is efficient. If you want to learn more about car differentials, read this article.
It is also known as cardan shaft, propeller shaft or drive shaft
A propshaft or propshaft is a mechanical component that transmits rotation or torque from an engine or transmission to the front or rear wheels of a vehicle. Because the axes are not directly connected to each other, it must allow relative motion. Because of its role in propelling the vehicle, it is important to understand the components of the driveshaft. Here are some common types. Isokinetic Joint: This type of joint guarantees that the output speed is the same as the input speed. To achieve this, it must be mounted back-to-back on a plane that bisects the drive angle. Then mount the 2 gimbal joints back-to-back and adjust their relative positions so that the velocity changes at 1 joint are offset by the other joint. Driveshaft: The driveshaft is the transverse shaft that transmits power to the front wheels. Driveshaft: The driveshaft connects the rear differential to the transmission. The shaft is part of a drive shaft assembly that includes a drive shaft, a slip joint, and a universal joint. This shaft provides rotational torque to the drive shaft. Dual Cardan Joints: This type of driveshaft uses 2 cardan joints mounted back-to-back. The center yoke replaces the intermediate shaft. For the duplex universal joint to work properly, the angle between the input shaft and the output shaft must be equal. Once aligned, the 2 axes will operate as CV joints. An improved version of the dual gimbal is the Thompson coupling, which offers slightly more efficiency at the cost of added complexity.
It transmits torque at different angles between driveline components
A vehicle’s driveline consists of various components that transmit power from the engine to the wheels. This includes axles, propshafts, CV joints and differentials. Together, these components transmit torque at different angles between driveline components. A car’s powertrain can only function properly if all its components work in harmony. Without these components, power from the engine would stop at the transmission, which is not the case with a car. The CV driveshaft design provides smoother operation at higher operating angles and extends differential and transfer case life. The assembly’s central pivot point intersects the joint angle and transmits smooth rotational power and surface speed through the drivetrain. In some cases, the C.V. “U” connector. Drive shafts are not the best choice because the joint angles of the “U” joints are often substantially unequal and can cause torsional vibration. Driveshafts also have different names, including driveshafts. A car’s driveshaft transfers torque from the transmission to the differential, which is then distributed to other driveline components. A power take-off (PTO) shaft is similar to a prop shaft. They transmit mechanical power to connected components. They are critical to the performance of any car. If any of these components are damaged, the entire drivetrain will not function properly. A car’s powertrain can be complex and difficult to maintain. Adding vibration to the drivetrain can cause premature wear and shorten overall life. This driveshaft tip focuses on driveshaft assembly, operation, and maintenance, and how to troubleshoot any problems that may arise. Adding proper solutions to pain points can extend the life of the driveshaft. If you’re in the market for a new or used car, be sure to read this article.
it consists of several parts
“It consists of several parts” is 1 of 7 small prints. This word consists of 10 letters and is 1 of the hardest words to say. However, it can be explained simply by comparing it to a cow’s kidney. The cocoa bean has several parts, and the inside of the cocoa bean before bursting has distinct lines. This article will discuss the different parts of the cocoa bean and provide a fun way to learn more about the word.
Replacement is expensive
Replacing a car’s driveshaft can be an expensive affair, and it’s not the only part that needs servicing. A damaged drive shaft can also cause other problems. This is why getting estimates from different repair shops is essential. Often, a simple repair is cheaper than replacing the entire unit. Listed below are some tips for saving money when replacing a driveshaft. Listed below are some of the costs associated with repairs: First, learn how to determine if your vehicle needs a driveshaft replacement. Damaged driveshaft components can cause intermittent or lack of power. Additionally, improperly installed or assembled driveshaft components can cause problems with the daily operation of the car. Whenever you suspect that your car needs a driveshaft repair, seek professional advice. A professional mechanic will have the knowledge and experience needed to properly solve the problem. Second, know which parts need servicing. Check the u-joint bushing. They should be free of crumbs and not cracked. Also, check the center support bearing. If this part is damaged, the entire drive shaft needs to be replaced. Finally, know which parts to replace. The maintenance cost of the drive shaft is significantly lower than the maintenance cost. Finally, determine if the repaired driveshaft is suitable for your vehicle. If you suspect your driveshaft needs service, make an appointment with a repair shop as soon as possible. If you are experiencing vibration and rough riding, driveshaft repairs may be the best way to prevent costly repairs in the future. Also, if your car is experiencing unusual noise and vibration, a driveshaft repair may be a quick and easy solution. If you don’t know how to diagnose a problem with your car, you can take it to a mechanic for an appointment and a quote.
Mobile Engineering Rig and Water Well Rig Drilling Machine
Production Description YG series hydraulic water well drilling rig is mainly used for water well, geological general investigation and exploration,kinds of hole in concrete structure,road and tall building foundation exploration,river levees,subgrade grouting hole drilling and direct grouting,civil wells and earth temperature central air conditioner,etc.
Feature
1.Engine:Feed by hydraulic cylinder,the drilling efficiency is higher and it can save labor. 2.Drill rod:53×59 drilling rod adopted,high rigidity and strong delivery torque. 3.Spindle:Vertical spindle are fixed by 4 groups of bearing to ensure that the rotary machine is rigid enough for gravel layer and other complex geoloical conditions. 4.Mud pump:Equip mud pump with flow 160L/min,save cost and also make the structure compact. 5.Concentrated handle, small footprint,light weight, strong decomposition, easy to move.
Spare parts
Technical Parameter
The whole machine parameters
Model
YG-130Y/130YY
YG-180Y/180YY
YG-200Y/200YY
Drill hole depth
130m
180m
200m
Maximum opening diameter
220mm
220mm
325mm
Final hole diameter
75mm
75mm
75mm
Drill pipe diameter
Φ42mm,50mm,60mm
Φ42mm,50mm,60mm
Φ42mm,50mm,60mm
Borehole inclination
90°- 75°
90°- 75°
90°- 75°
Power(diesel engine)
13.2/2200kw/r/min
13.2/2200kw/r/min
15/2200kw/r/min
Motor
22KW
36kw
42kw
Vertical shaft
Vertical spindle speed
142,285,570r/min
130,480,730,1045r/min
130,480,730,1045r/mi
Vertical stroke
450mm
450mm
450mm
Hoist
Single line lifting capacity
20KN
21KN
25KN
Single rope lifting speed
0.41-1.64m/s
0.35-2.23m/s
0.12-0.95m/s
Drum diameter
Φ140mm
Φ140mm
Φ140mm
Diameter of wire rope
Φ9.3mm
Φ9.3mm
Φ13mm
Wire rope capacity
27m
27m
35m
Mud pump
Model
BW160
BW160
BW250
Flow
160L/min
160L/min
250L/min
Maximum pressure
12Mpa
12Mpa
17Mpa
Reciprocating frequency
93times/min
93times/min
93times/min
Water inlet diameter
Φ51mm
Φ51mm
Φ75mm
Water to exit diameter
Φ32mm
Φ32mm
Φ50mm
Drilling Tower
Rated load
18Ton
18Ton
18Ton
Effective height
6.5m
7.5m
9m
Tower leg spec.
Φ73mm
Φ73mm
Φ73mm
Package
Water well drilling rig machine use Standard export wooden case or as your requirement.
Company Information ZheJiang CZPT Machinery Co., Ltd., located in Xihu (West Lake) Dis. District of HangZhou City, ZheJiang Province, is a large engineering machinery manufacturing enterprise which focuses on research and development, production and sales of drilling equipment in mining, tunnel, road and bridge construction. We can produce sets of construction system equipment such as drilling machine, road construction machine and demolition cutting machine, etc. Technical design, material purchasing, precise manufacturing and strict quality inspection are all processed according to top standard. “Quality First, Reputation First, Be Innovative, Be Excellent.” has always been our purpose. We warmly welcome your corporation from all fields and build great future for us all.
Our Certification
Purchase Assurance High quality raw material suppliers provide us stable and excellent performance machines; skilled and responsible engineers, technicians and workers keep our production line proceed well-organized; we’ll test running every machine before delivery, to make sure it works well in clients’ construction sites; all machines have one–year warranty and lifelong maintenance, our sales manager provide elaborate machine-related consulting service and technical assistance during pre and after-sales, to make sure clients are proficient in operating our machines.
Contact Us
Reated product
Why Checking the Drive Shaft is Important
If you hear clicking noises while driving, your driveshaft may need repair. An experienced mechanic can tell if the noise is coming from 1 side or both sides. This problem is usually related to the torque converter. Read on to learn why it’s so important to have your driveshaft inspected by an auto mechanic. Here are some symptoms to look for. Clicking noises can be caused by many different things. You should first check if the noise is coming from the front or the rear of the vehicle.
hollow drive shaft
Hollow driveshafts have many benefits. They are light and reduce the overall weight of the vehicle. The largest manufacturer of these components in the world is CZPT. They also offer lightweight solutions for various applications, such as high-performance axles. CZPT driveshafts are manufactured using state-of-the-art technology. They offer excellent quality at competitive prices. The inner diameter of the hollow shaft reduces the magnitude of the internal forces, thereby reducing the amount of torque transmitted. Unlike solid shafts, hollow shafts are getting stronger. The material inside the hollow shaft is slightly lighter, which further reduces its weight and overall torque. However, this also increases its drag at high speeds. This means that in many applications hollow driveshafts are not as efficient as solid driveshafts. A conventional hollow drive shaft consists of a first rod 14 and a second rod 14 on both sides. The first rod is connected with the second rod, and the second rod extends in the rotation direction. The 2 rods are then friction welded to the central area of the hollow shaft. The frictional heat generated during the relative rotation helps to connect the 2 parts. Hollow drive shafts can be used in internal combustion engines and environmentally-friendly vehicles. The main advantage of a hollow driveshaft is weight reduction. The splines of the hollow drive shaft can be designed to be smaller than the outside diameter of the hollow shaft, which can significantly reduce weight. Hollow shafts are also less likely to jam compared to solid shafts. Hollow driveshafts are expected to eventually occupy the world market for automotive driveshafts. Its advantages include fuel efficiency and greater flexibility compared to solid prop shafts.
Cardan shaft
Cardan shafts are a popular choice in industrial machinery. They are used to transmit power from 1 machine to another and are available in a variety of sizes and shapes. They are available in a variety of materials, including steel, copper, and aluminum. If you plan to install 1 of these shafts, it is important to know the different types of Cardan shafts available. To find the best option, browse the catalog. Telescopic or “Cardan” prop shafts, also known as U-joints, are ideal for efficient torque transfer between the drive and output system. They are efficient, lightweight, and energy-efficient. They employ advanced methods, including finite element modeling (FEM), to ensure maximum performance, weight, and efficiency. Additionally, the Cardan shaft has an adjustable length for easy repositioning. Another popular choice for driveshafts is the Cardan shaft, also known as a driveshaft. The purpose of the driveshaft is to transfer torque from the engine to the wheels. They are typically used in high-performance car engines. Some types are made of brass, iron, or steel and have unique surface designs. Cardan shafts are available in inclined and parallel configurations. Single Cardan shafts are a common replacement for standard Cardan shafts, but if you are looking for dual Cardan shafts for your vehicle, you will want to choose the 1310 series. This type is great for lifted jeeps and requires a CV-compatible transfer case. Some even require axle spacers. The dual Cardan shafts are also designed for lifts, which means it’s a good choice for raising and lowering jeeps.
universal joint
Cardan joints are a good choice for drive shafts when operating at a constant speed. Their design allows a constant angular velocity ratio between the input and output shafts. Depending on the application, the recommended speed limit may vary depending on the operating angle, transmission power, and application. These recommendations must be based on pressure. The maximum permissible speed of the drive shaft is determined by determining the angular acceleration. Because gimbal joints don’t require grease, they can last a long time but eventually fail. If they are poorly lubricated or dry, they can cause metal-to-metal contact. The same is true for U-joints that do not have oil filling capability. While they have a long lifespan, it can be difficult to spot warning signs that could indicate impending joint failure. To avoid this, check the drive shaft regularly. U-joints should not exceed 70 percent of their lateral critical velocity. However, if this speed is exceeded, the part will experience unacceptable vibration, reducing its useful life. To determine the best U-joint for your application, please contact your universal joint supplier. Typically, lower speeds do not require balancing. In these cases, you should consider using a larger pitch diameter to reduce axial force. To minimize the angular velocity and torque of the output shaft, the 2 joints must be in phase. Therefore, the output shaft angular displacement does not completely follow the input shaft. Instead, it will lead or lag. Figure 3 illustrates the angular velocity variation and peak displacement lead of the gimbal. The ratios are shown below. The correct torque for this application is 1360 in-Ibs.
Refurbished drive shaft
Refurbished driveshafts are a good choice for a number of reasons. They are cheaper than brand new alternatives and generally just as reliable. Driveshafts are essential to the function of any car, truck, or bus. These parts are made of hollow metal tubes. While this helps reduce weight and expense, it is vulnerable to external influences. If this happens, it may crack or bend. If the shaft suffers this type of damage, it can cause serious damage to the transmission. A car’s driveshaft is a critical component that transmits torque from the engine to the wheels. A1 Drive Shaft is a global supplier of automotive driveshafts and related components. Their factory has the capability to refurbish and repair almost any make or model of driveshafts. Refurbished driveshafts are available for every make and model of vehicle. They can be found on the market for a variety of vehicles, including passenger cars, trucks, vans, and SUVs. Unusual noises indicate that your driveshaft needs to be replaced. Worn U-joints and bushings can cause excessive vibration. These components cause wear on other parts of the drivetrain. If you notice any of these symptoms, please take your vehicle to the AAMCO Bay Area Center for a thorough inspection. If you suspect damage to the driveshaft, don’t wait another minute – it can be very dangerous.
The cost of replacing the drive shaft
The cost of replacing a driveshaft varies, but on average, this repair costs between $200 and $1,500. While this price may vary by vehicle, the cost of parts and labor is generally equal. If you do the repair yourself, you should know how much the parts and labor will cost before you start work. Some parts can be more expensive than others, so it’s a good idea to compare the cost of several locations before deciding where to go. If you notice any of these symptoms, you should seek a repair shop immediately. If you are still not sure if the driveshaft is damaged, do not drive the car any distance until it is repaired. Symptoms to look for include lack of power, difficulty moving the car, squeaking, clanking, or vibrating when the vehicle is moving. Parts used in drive shafts include center support bearings, slip joints, and U-joints. The price of the driveshaft varies by vehicle and may vary by model of the same year. Also, different types of driveshafts require different repair methods and are much more expensive. Overall, though, a driveshaft replacement costs between $300 and $1,300. The process may take about an hour, depending on the vehicle model. Several factors can lead to the need to replace the drive shaft, including bearing corrosion, damaged seals, or other components. In some cases, the U-joint indicates that the drive shaft needs to be replaced. Even if the bearings and u-joints are in good condition, they will eventually break and require the replacement of the drive shaft. However, these parts are not cheap, and if a damaged driveshaft is a symptom of a bigger problem, you should take the time to replace the shaft.
Mounted on Track Drill Rig Machine Well Drilling Rig for Sale
Product Information of XY-400C Drilling Rig Machine
According to the difficulties of customers encountered in the actual drilling: (1)Time-consuming of installation and dismantle, labor force waste; (2) Potential safety problems and difficult to transport,high cost and time-consuming effort; (3)Integrative mud pump failure rate is high, the space is narrow when replace the piston, operation is extremely difficult, avoild the mud pump from water in winter also is a practical problem.
Thus our engineers and technical experts develop and produce the brand new model XY 400C with over 20 years drilling machinery production experience,by repeated practice and improvement,finally we can offer you the mature products model XY-400C.
Parameters of XY-400C Drilling Rig Machine
1. Main Parameters
Max. Drilling Depth
400m
Diameter of drill pipe
Φ42,Φ50,Φ60,Φ76
Angle of vertical spindle
0°~90°
Drilling capability
Φ75mm (3in) drill diameter
Max. Depth 400m
Φ108mm (4.25) drill diameter
Max. Depth 320m
Φ127mm (5in) drill diameter
Max. Depth 280m
Φ168mm (6 3/5in) drill diameter
Max. Depth 220m
Φ219mm (8 3/5in) drill diameter
Max. Depth 160m
Φ273mm (10 3/4in) drill diameter
Max. Depth 130m
Φ400mm (15 3/4in) drill diameter
Max. Depth 100m
Φ500mm (19 1/2in) drill diameter
Max. Depth 50m
Φ600mm (23 3/5in) drill diameter
Max. Depth 30m
2. Vertical Spindle
Rotation speed
Forward 8 grades
50-1150r/min
Reverse 2 grades
29-137r/min
Spindle stroke
600mm
Spindle bore
62mm
Hoisting capability
6000kg
Max. Torque
2800N.m
3. Main hoist
Lifting speed of single wire
0.5-1.9m/s
Diameter of wire rope
14.0mm
Carry capacity of single wire
4000kg
Diameter of winding drum
300mm
Volume of winding drum
50m
Lifting capability of single wire
3000kg
4.Auxiliary Hoist
Winding drum
140mm
Diameter of steel wire rope
6mm
Volume of winding drum
450m
5. Mud pump(as per your choice)
Horizontal triplex mud pump
BW-200II
Displacement
200L/min
Working pressure
50kg/cm² @ 5MPa
Diameter of water inlet hose
65mm
Diameter of water outlet hose
38mm
6.Power supply(choose 1 between the following two)
Diesel engine
17.6kw (24HP)
Electrical motor
Y160L-4,18.5kw
7. Weight and Dimension of main drilling rig
Weight
3000kg
Dimension
3980×1950×2750mm
8.Six-wheel Trailer
Walking speed
Less than 10Km/h
Frame carrying capacity
8.5 tons
Steering wheel 600-14(Single wheel)
0.68 tons
Bearing wheel 650-14(double wheels)
0.9 tons
Minimum turing angle
6.8m
Characteristics of XY-400C Drilling Rig Machine
(1) XY-400C has 8 grades forward rotation speed and 2 grades reverse rotation speed, wide speed adjustable rang.
(2) Compact mechanical transmission structure, light weight, large diameter of spindle bore, hydraulic stabilizer legs, good rigidity .
(3) Advanced hydraulic system design makes the control handles concentrated, compact layout reasonable, easy operation, flexible and reliable; Can realize remote speed change, more humanization operation.
(4) Uses the electric-start diesel engine, greatly reduces the labor intensity of operators, especially more efficient in the cold season when the diesel engine start is difficult, showing its great advantage.
(5)Equipped with the bottom hole pressure indicator, easy to master the situation inside the hole.
(6)The above two kindsall use the latest XY-400 host, hydraulic stabilizer legs, foldable hydraulic drilling tower ofhydraulic automatic rise and fall, greatly improve the working efficiency,reduces the labor intensity.The actual construction have proved that our XY-400 series dramatically increase the economic benefit of users.
Working of Drilling Rig Machine
Difference models for choice:
Model
Drilling Caliber
Max. depth
Feature
XY100
75~300mm
100m
Disassemble drill tower;
Small in size.
XY-130
75~300mm
130m
XY-150
75~400mm
150m
XY-180
75~400mm
180m
XY-200
75~400mm
200m
XY-200F
75~400mm
200m
Integrative drill tower;
Easy to transport.
XY-200C
75~400mm
200m
XY-600F
75~500mm
600m
DEFY Service
1.Professional technical support pre-sale, sale and after-sale . 2.Your problems can get feedback in 8 hours and be solved in 24 hours. 3.Machine can be customized as per your requirement. 4.One year quality warranty. 5.Training: operation manual and DVD operation video, overseas installation is also available. 6.Spare parts are available in our factory at cost price for former customers.
FAQ
Q1: Are you trading company or manufacturer? A1: We are original equipment manufacturer.we design,produce and sell.We master the core technology, and constantly adjust our products according to the market trend and customer feedback, ensure product quality.
Q2: How long is your delivery time? A2: It is according to the model and quantity. Generally it is 3-5 days if the machines are in stock. It will be 15-30 days if you want to customize the machines.
Q3: What do I need to do after payment? A3: a) If under FOB trading terms,you need to employ a ship forwarder to ship the goods to you; b) Under CIF trading terms,we send the goods to the destination port,and contact you to pick up the goods; All documents for customs clearance will be sent to you by international express after shipment.
How to choose a suitable drilling rig?
1. What will you do using drilling rig? —For water project, core sample, soil test, mineral prospect or others?
2. The depth you need? —For water well, generally, 30-200m. For core sample, 30-600m, even more.
3. Any requirements to hole diameter?
—Within a certain range, the smaller diameter, the deeper depth. Mathematically, we call it inversely proportional.
4. Working land condition? A. soil, sand, weathered land, etc. soft stratum. B. soil, sand, soft and hard rock stratum, mixed one. C. Mainly hard rock, like granite.
Based on the above information, Our experienced engineers will help you recommend suitable machine and price. If you have special demands, please tell us ahead.
About Us
HangZhou CZPT Mechanical & Electrical Equipment Co.,Ltd. locates in High-tech zone of HangZhou city, China.
Our factory dedicates in manufacturing drilling rig since 1970s, more than 40 years’ experience of production and development makes our product quality rank in the leading position at home and abroad.
We are always seeking for ever greater perfection, keeping improving the production technology, offering better user experience.
What is a drive shaft?
If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
The drive shaft is a mechanical part
A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock. Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them. The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.
It transfers power from the engine to the wheels
A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed. The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain. The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.
It has a rubber boot that protects it from dust and moisture
To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
it has a U-shaped connector
The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped. The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest. Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.
it has a slide-in tube
The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications. The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
It uses a bearing press to replace worn or damaged U-joints
A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly. Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself. If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.
600m Deep Hole Drilling Rig Machine for Water Well
Product Information of XY-600F Drilling Rig Machine
XY-600F hydraulic drilling rig adopts the latest technology for CZPT drilling. It is widely used to drill water well, geothermal hole, mining blasting, geological exploration, water conservancy, etc.
Parameters of XY-600F Drilling Rig Machine
XY-600F Drilling Rig
1. Main Parameters
Max. Drilling Depth
600m
Diameter of drill pipe
Φ42,Φ50,Φ60,Φ76
Angle of vertical spindle
90°~65°
Drilling capability
Φ75mm drill diameter
Max. Depth 600m
Φ108mm drill diameter
Max. Depth 500m
Φ127mm drill diameter
Max. Depth 400m
Φ159mm drill diameter
Max. Depth 300m
Φ219mm drill diameter
Max. Depth 210m
Φ273mm(10-4/5in) drill diameter
Max. Depth 150m
Φ500mm(19-3/5in) drill diameter
Max. Depth 80m
2. Vertical Spindle
Rotation speed
Forward 10 grades
30-1050r/min
Reverse 2 grades
29-137r/min
Spindle stroke
560mm
Spindle bore
96mm
Hoisting capability
6000kg
Max. Torque
3800N.m
3. Main hoist
Lifting speed of single wire
0.5-1.9m/s
Diameter of wire rope
12.5mm
Carry capacity of single wire
4000kg
Diameter of winding drum
300mm
Volume of winding drum
50m
Lifting capability of single wire
3000kg
4.Auxiliary Hoist
Winding drum
140mm
Diameter of steel wire rope
6mm
Volume of winding drum
450m
5. Mud pump(as per your choice)
Horizontal triplex mud pump
BW-200II
Displacement
200L/min
Working pressure
50kg/cm² @ 5MPa
Diameter of water inlet hose
65mm
Diameter of water outlet hose
38mm
6.Power supply(choose 1 between the following two)
Diesel engine
Model 4100,38KW(50PS)
Electrical motor
Y180M-4B35,22kw
7. Weight and Dimension of main drilling rig
Weight
2880kg
Dimension
3700×1850×3200mm
8.Six-wheel Trailer
Walking speed
25Km/hr
Frame carrying capacity
4 tons
Steering wheel 600-14
0.75 tons
Bearing wheel 650-15
0.9 tons
Minimum turning angle
6.8m
9. Oil Pump
CBN-F32
Working pressure
20Mpa
Displacement
32L/min
Characteristics of XY-600F Drilling Rig Machine
(1) XY-600F adopts the newest automobile transmission assembly, with 10 grades forward rotation speed and 2 grades reverse rotation speed, reasonable design, wide speed adjustable range, can meet various stratum drilling requirements.
(2) Can meet the demand for various high efficiency drilling process needs, such as diamond wire line coring, impact drilling, reverse circulation continuous coring (sampling) etc.
(3) Strong power, strong torque, strong bearing capacity, convenient to solve different downhole accidents. Compact mechanical transmission structure, light weight, large diameter of spindle bore, hydraulic stabilizer legs, good rigidity .
(4) Using hexagonal kelly bar to ensure the stable transmission of torque. Can not only meet the small-diameter CZPT deep hole drilling, but also can satisfy the large-diameter carbide drilling and different engineering drilling works.
(5) Advanced hydraulic system design makes the control handles concentrated, compact layout reasonable, easy operation, flexible and reliable; Can realize remote speed change, more humanization operation.
(6) The hydraulic system can adjust the feed pressure and feed speed during controlling the feed process, in order to meet different stratum drilling needs. At the same time it is equipped with the bottom hole pressure indicator, easy to master the situation inside the hole.
(7) The vertical spindle is equipped with hydraulic chuck,using the connecting rod type spring to clamp, hydraulic chuck to loosen, carbide welding type slips, strong clamping force,long service life and reliable operation.
(8) Advanced transfer case design, can implement easily independent operation of vertical shaft and winch.
Working of XY-600F Drilling Rig Machine
DEFY Service
1.Professional technical support pre-sale, sale and after-sale . 2.Your problems can get feedback in 8 hours and be solved in 24 hours. 3.Machine can be customized as per your requirement. 4.One year quality warranty. 5.Training: operation manual and DVD operation video, overseas installation is also available. 6.Spare parts are available in our factory at cost price for former customers.
Other models for your choice:
Model
Drilling Caliber
Max. depth
Feature
XY100
75~300mm
100m
Disassemble drill tower;
Small in size.
XY-130
75~300mm
130m
XY-150
75~400mm
150m
XY-180
75~400mm
180m
XY-200
75~400mm
200m
XY-200F
75~400mm
200m
Integrative drill tower;
Easy to transport.
XY-200C
75~400mm
200m
XY-600F
75~500mm
600m
FAQ
Q1: Are you trading company or manufacturer? A1: We are original equipment manufacturer.we design,produce and sell.We master the core technology, and constantly adjust our products according to the market trend and customer feedback, ensure product quality.
Q2: How long is your delivery time? A2: It is according to the model and quantity. Generally it is 3-5 days if the machines are in stock. It will be 15-30 days if you want to customize the machines.
Q3: What do I need to do after payment? A3: a) If under FOB trading terms,you need to employ a ship forwarder to ship the goods to you; b) Under CIF trading terms,we send the goods to the destination port,and contact you to pick up the goods; All documents for customs clearance will be sent to you by international express after shipment.
How to choose a suitable drilling rig?
1. What will you do using drilling rig? —For water project, core sample, soil test, mineral prospect or others?
2. The depth you need? —For water well, generally, 30-200m. For core sample, 30-600m, even more.
3. Any requirements to hole diameter?
—Within a certain range, the smaller diameter, the deeper depth. Mathematically, we call it inversely proportional.
4. Working land condition? A. soil, sand, weathered land, etc. soft stratum. B. soil, sand, soft and hard rock stratum, mixed one. C. Mainly hard rock, like granite.
Based on the above information, Our experienced engineers will help you recommend suitable machine and price. If you have special demands, please tell us ahead.
About Us
HangZhou CZPT Mechanical & Electrical Equipment Co.,Ltd. locates in High-tech zone of HangZhou city, China.
Our factory dedicates in manufacturing drilling rig since 1970s, more than 40 years’ experience of production and development makes our product quality rank in the leading position at home and abroad.
We are always seeking for ever greater perfection, keeping improving the production technology, offering better user experience.
Screw Shaft Types
If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.
Machined screw shafts
Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids. For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance. Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find 1 to fit your needs. And since each size requires a different material, your choice of material is important as well. In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.
Ball screw nuts
If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft. When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the 2 ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw. The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction. The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These 2 features ensure that the ball and the nut meet at 2 points. You’ll be amazed by the results of the work of these ball screw nuts.
Threaded shank
Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress 2 pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as 1 with a fully threaded shank. In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is 8 mm in diameter but has a thread pitch of 1 mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing. The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well. The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.
Round head
A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project. A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice. Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look. Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to 1 mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
Self-locking mechanism
A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism. The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw. Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable. Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.
A.53*59 drilling rod adopted,high rigidity and strong delivery torque. the machine is equipped with national patent technology—taper clutch,with charactristics of strong transmission troque,easy operation and free maintenance. B.for the winch,we use large module planetary gear and add supporting frame,greatly increasing hoisting and braking ability of the winch. C.vertical spindle are fixed by 4 groups of bearings to ensure that the rotary machine is rigid enough for gravel layer and other complex geoloical conditions. D.we are the first 1 to equip mud pump with the flow 160L/min in china so that it will save cost and also make the machine compact,moblie and lightweight.
2.HW-230 Water Well Drilling Rig Applications
HW-230 drilling rig is mainly used for geological general investigation and exploration,road and tall buliding foundation exploration,kinds of hole in concrete structure,river levees,subgrade grouting hole drillling and driect grouting,civil wells and earth temperature entral air-conditioner,etc.
Main Technical Parameter
Drilling depth
30-230m
Max open hole caliber
3
HangZhou CZPT Mining Machinery Co., Ltd.
Please consider the environment before printing this email.
Types of Splines
There are 4 types of splines: Involute, Parallel key, helical, and ball. Learn about their characteristics. And, if you’re not sure what they are, you can always request a quotation. These splines are commonly used for building special machinery, repair jobs, and other applications. The CZPT Manufacturing Company manufactures these shafts. It is a specialty manufacturer and we welcome your business.
Involute splines
The involute spline provides a more rigid and durable structure, and is available in a variety of diameters and spline counts. Generally, steel, carbon steel, or titanium are used as raw materials. Other materials, such as carbon fiber, may be suitable. However, titanium can be difficult to produce, so some manufacturers make splines using other constituents. When splines are used in shafts, they prevent parts from separating during operation. These features make them an ideal choice for securing mechanical assemblies. Splines with inward-curving grooves do not have sharp corners and are therefore less likely to break or separate while they are in operation. These properties help them to withstand high-speed operations, such as braking, accelerating, and reversing. A male spline is fitted with an externally-oriented face, and a female spline is inserted through the center. The teeth of the male spline typically have chamfered tips to provide clearance with the transition area. The radii and width of the teeth of a male spline are typically larger than those of a female spline. These specifications are specified in ANSI or DIN design manuals. The effective tooth thickness of a spline depends on the involute profile error and the lead error. Also, the spacing of the spline teeth and keyways can affect the effective tooth thickness. Involute splines in a splined shaft are designed so that at least 25 percent of the spline teeth engage during coupling, which results in a uniform distribution of load and wear on the spline.
Parallel key splines
A parallel splined shaft has a helix of equal-sized grooves around its circumference. These grooves are generally parallel or involute. Splines minimize stress concentrations in stationary joints and allow linear and rotary motion. Splines may be cut or cold-rolled. Cold-rolled splines have more strength than cut spines and are often used in applications that require high strength, accuracy, and a smooth surface. A parallel key splined shaft features grooves and keys that are parallel to the axis of the shaft. This design is best suited for applications where load bearing is a primary concern and a smooth motion is needed. A parallel key splined shaft can be made from alloy steels, which are iron-based alloys that may also contain chromium, nickel, molybdenum, copper, or other alloying materials. A splined shaft can be used to transmit torque and provide anti-rotation when operating as a linear guide. These shafts have square profiles that match up with grooves in a mating piece and transmit torque and rotation. They can also be easily changed in length, and are commonly used in aerospace. Its reliability and fatigue life make it an excellent choice for many applications. The main difference between a parallel key splined shaft and a keyed shaft is that the former offers more flexibility. They lack slots, which reduce torque-transmitting capacity. Splines offer equal load distribution along the gear teeth, which translates into a longer fatigue life for the shaft. In agricultural applications, shaft life is essential. Agricultural equipment, for example, requires the ability to function at high speeds for extended periods of time.
Involute helical splines
Involute splines are a common design for splined shafts. They are the most commonly used type of splined shaft and feature equal spacing among their teeth. The teeth of this design are also shorter than those of the parallel spline shaft, reducing stress concentration. These splines can be used to transmit power to floating or permanently fixed gears, and reduce stress concentrations in the stationary joint. Involute splines are the most common type of splined shaft, and are widely used for a variety of applications in automotive, machine tools, and more. Involute helical spline shafts are ideal for applications involving axial motion and rotation. They allow for face coupling engagement and disengagement. This design also allows for a larger diameter than a parallel spline shaft. The result is a highly efficient gearbox. Besides being durable, splines can also be used for other applications involving torque and energy transfer. A new statistical model can be used to determine the number of teeth that engage for a given load. These splines are characterized by a tight fit at the major diameters, thereby transferring concentricity from the shaft to the female spline. A male spline has chamfered tips for clearance with the transition area. ANSI and DIN design manuals specify the different classes of fit. The design of involute helical splines is similar to that of gears, and their ridges or teeth are matched with the corresponding grooves in a mating piece. It enables torque and rotation to be transferred to a mate piece while maintaining alignment of the 2 components. Different types of splines are used in different applications. Different splines can have different levels of tooth height.
Involute ball splines
When splines are used, they allow the shaft and hub to engage evenly over the shaft’s entire circumference. Because the teeth are evenly spaced, the load that they can transfer is uniform and their position is always the same regardless of shaft length. Whether the shaft is used to transmit torque or to transmit power, splines are a great choice. They provide maximum strength and allow for linear or rotary motion. There are 3 basic types of splines: helical, crown, and ball. Crown splines feature equally spaced grooves. Crown splines feature involute sides and parallel sides. Helical splines use involute teeth and are often used in small diameter shafts. Ball splines contain a ball bearing inside the splined shaft to facilitate rotary motion and minimize stress concentration in stationary joints. The 2 types of splines are classified under the ANSI classes of fit. Fillet root splines have teeth that mesh along the longitudinal axis of rotation. Flat root splines have similar teeth, but are intended to optimize strength for short-term use. Both types of splines are important for ensuring the shaft aligns properly and is not misaligned. The friction coefficient of the hub is a complex process. When the hub is off-center, the center moves in predictable but irregular motion. Moreover, when the shaft is centered, the center may oscillate between being centered and being off-center. To compensate for this, the torque must be adequate to keep the shaft in its axis during all rotation angles. While straight-sided splines provide similar centering, they have lower misalignment load factors.
Keyed shafts
Essentially, splined shafts have teeth or ridges that fit together to transfer torque. Because splines are not as tall as involute gears, they offer uniform torque transfer. Additionally, they provide the opportunity for torque and rotational changes and improve wear resistance. In addition to their durability, splined shafts are popular in the aerospace industry and provide increased reliability and fatigue life. Keyed shafts are available in different materials, lengths, and diameters. When used in high-power drive applications, they offer higher torque and rotational speeds. The higher torque they produce helps them deliver power to the gearbox. However, they are not as durable as splined shafts, which is why the latter is usually preferred in these applications. And while they’re more expensive, they’re equally effective when it comes to torque delivery. Parallel keyed shafts have separate profiles and ridges and are used in applications requiring accuracy and precision. Keyed shafts with rolled splines are 35% stronger than cut splines and are used where precision is essential. These splines also have a smooth finish, which can make them a good choice for precision applications. They also work well with gears and other mechanical systems that require accurate torque transfer. Carbon steel is another material used for splined shafts. Carbon steel is known for its malleability, and its shallow carbon content helps create reliable motion. However, if you’re looking for something more durable, consider ferrous steel. This type contains metals such as nickel, chromium, and molybdenum. And it’s important to remember that carbon steel is not the only material to consider.
Fast Speed Water Well Drilling Rig Machine For Sale
1.Machine Introduction: Drilling rig is mainly used for geological general investigation and exploration,road and tall building foundation exploration, kinds of hole in concrete structure,river levees,sub-grade grouting hole drillinrect grouting, civil wells and earth temperature central air-conditioner,etc.
Features of Water Well Drilling Rig:
1.53*59 drilling rod adopted, high rigidity and strong delivery torque.
2.The machine is equipped with national patent technology-taper clutch,with characteristic of strong transmission torque,easy operation and free maintenance. 3.for the winch, we use large module planetary gear and add supporting frame, greatly increasing hoisting and braking ability of the winch.
4.Vertical spindle are fixed by 4 groups of bearings to ensure that the rotary machine is rigid enough for gravel layer and other complex geologic conditions. 5.We are the first 1 to equip mud pump with the flow 160L/min in China so that it will save cost and also make the machine compact, mobile and lightweight.
2.Machine Photos:
3.Technical Parameters:
Model
HT-200
Drilling depth
200m
Maximum open hole caliber
φ75-φ300mm
End hole caliber
75mm
Kelly bar
53/59*4200mm
Drill diameter
φ50,φ60mm
Drill angle
90°~75°
Engine (diesel engine)
15/2200kW/r/min
Weight/size
1150kg/2700*950*1770
Vertical shaft
Vertical speed
64,128,287,557r/min
Spindle stroke
450mm
Hoist
Single line lifting weight
24kN
Single line lifting speed
0.12,0.22,0.49,0.95m/s
Reel diameter
φ140mm
Wire rope diameter
Φ13mm
Wire rope capacity
35m
Rig
Rated load
5t
Rated load
6m
Tower legs specifications
89mm
Mud pump
Model
BW145
Maximum pressure
2Mpa
Capacity
140L/min
Reciprocation number of times
93 /min
Water inlet caliber
φ51mm*4.5m
Water to exit caliber
φ32mm*6m
4.Company Certificate:
5.Packing&Delivery:
6.Our Customer:
7.Contact Information: If you need further information, please contact us freely, we will do our best to cooperate with you.
Analytical Approaches to Estimating Contact Pressures in Spline Couplings
A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
Modeling a spline coupling
Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach. To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values. After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same. Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline. After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.
Creating a spline coupling model 20
The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified. The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees. A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design. In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed. The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
Analysing a spline coupling model 20
An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36. When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation. Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis. Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline. The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
Misalignment of a spline coupling
A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels. The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement. Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios. A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction. When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach! In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.
High Quality Portable Water Well Drilling Rigs Machine
Product description: Hydraulic core drilling rig is mainly used for geological general investigation and exploration,kinds of hole in concrete structure,road and tall building foundation exploration,river levees,subgrade grouting hole drilling and direct grouting,civil wells and earth temperature central air conditioner,etc.
Features:
Engine:Feed by hydraulic cylinder,the drilling efficiency is higher and it can save labor.
Drill rod:53×59 drilling rod adopted,high rigidity and strong delivery torque.
Spindle:Vertical spindle are fixed by 4 groups of bearing to ensure that the rotary machine is rigid enough for gravel layer and other complex geoloical conditions.
Mud pump:Equip mud pump with flow 160L/min,save cost and also make the structure compact
Concentrated handle, small footprint,light weight, strong decomposition, easy to move.
Technical parameters:
The whole machine parameters
Model
YG130Y/130YY
YG180YG/180YYG
YG200Y/200YY
Drill hole depth
130m
180m
200m
Maximum opening diameter
Φ75-Φ220mm
Φ75-Φ220mm
Φ75-Φ325mm
Final hole diameter
Φ75mm
Φ75mm
Φ75mm
Take the initiative to drill pipe
53/59*4200mm
53/59*4200mm
53/59*4200mm
Drill pipe diameter
Φ42-60mm
Φ42-60mm
Φ42-60mm
Borehole inclination
90°- 75°
90°- 75°
90°- 75°
Power(diesel engine)
13.2/2200kw/r/min
13.2/2200kw/r/min
15/2200kw/r/min
Size
2.4*0.8*1.4m
2.4*0.8*1.3m
2.7*0.9*1.5
Vertical shaft
Vertical spindle speed
142,285,570r/min
130,480,730,1045r/min
64,28,287,557r/min
Vertical stroke
450mm
450mm
450mm
Hoist
Single rope lift
2000
2100
2500
Single rope winding speed
0.41-1.64m/s
0.35-2.23m/s
0.12-0.95m/s
Drum diameter
Φ140mm
Φ140mm
Φ140mm
Diameter of wire rope
Φ9.3mm
Φ9.3mm
Φ13mm
Wire rope capacity
27m
27m
35m
Rig
Rated load
18t
18t
18t
Effective height
6.5m
6.5m
6.5m
Tower leg specifications
Φ73mm
Φ73mm
Φ89mm
Mud pump
Model
BW95
BW95
BW145
Flow
95L/min
95L/min
145L/min
Maximum pressure
1.2Mpa
1.2Mpa
2Mpa
Reciprocating frequency
93times/min
93times/min
93times/min
Suction pipe diameter
Φ51mm*4.5m
Φ51mm*4.5m
Φ51mm*4.5m
Packing&Delivery:
Company Informations:
Applications of Spline Couplings
A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
Optimal design
The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface. Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints. Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application. Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight. The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
Characteristics
An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance. In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values. Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications. The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results. Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.
Applications
Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings. A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on. FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines. Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used. The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
Predictability
Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings. Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems. The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency. The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.