Tag Archives: bearing machine

China Standard Machine Tools Spindle 3310 ZZ/2RS Premium Quality Angular Contact Ball Bearing with Great quality

Product Description

Detailed Parameters

 

Double Row Angular Contact Ball Bearing
Bearing No. dxDxB (mm) Weight(kg)
3310 3310 ZZ 3310 2RS 50 110 44.4 1.810 

Ball Bearings and Applications

Ball Bearings:
1. Deep Groove Ball Bearing
2. Self-Aligning Ball Bearing
3. Angular Contact Ball Bearing
4. Thrust Ball Bearing

Applications:
1. Electric motors
2. Elevators
3. Conveyor systems
4. Agriculture industry
5. Steering applications
6. Industrial pumps and drive cars
7. Pulp and paper industry
8. Industrial gearboxes
9. Trucks, trailers and buses

Specifications of Angular Contact Ball Bearing

Double Row Angular Contact Ball Bearing
Bearing No. dxDxB (mm) Weight(kg) Bearing No. dxDxB (mm) Weight(kg)
3200 3200 ZZ 3200 2RS 10 30 14.3 0.049               
3201 3201 ZZ 3201 2RS 12 32 15.9 0.057               
3202 3202 ZZ 3202 2RS 15 35 15.9 0.064  3302 3302 ZZ 3302 2RS 15 42 19 0.132 
3203 3203 ZZ 3203 2RS 17 40 17.5 0.095  3303 3303 ZZ 3303 2RS 17 47 22.2 0.180 
3204 3204 ZZ 3204 2RS 20 47 17.5 0.150  3304 3304 ZZ 3304 2RS 20 52 22.2 0.217 
3205 3205 ZZ 3205 2RS 25 52 20.6 0.175  3305 3305 ZZ 3305 2RS 5 62 25.4 0.362 
3206 3206 ZZ 3206 2RS 30 62 23.8 0.286  3306 3306 ZZ 3306 2RS 30 72 30.2 0.553 
3207 3207 ZZ 3207 2RS 35 72 27 0.436  3307 3307 ZZ 3307 2RS 35 80 34.9 0.766 
3208 3208 ZZ 3208 2RS 40 80 30.2 0.590  3308 3308 ZZ 3308 2RS 40 90 36.5 1.571 
3209 3209 ZZ 3209 2RS 45 85 30.2 0.640  3309 3309 ZZ 3309 2RS 45 100 39.7 1.340 
3210 3210 ZZ 3210 2RS 50 90 30.2 0.690  3310 3310 ZZ 3310 2RS 50 110 44.4 1.810 
3211 3211 ZZ 3211 2RS 55 100 33.3 0.986  3311 3311 ZZ 3311 2RS 55 120 49.2 2.320 
3212 3212 ZZ 3212 2RS 60 110 36.5 1.270  3312 3312 ZZ 3312 2RS 60 130 54 3.050 
3213 3213 ZZ 3213 2RS 65 120 38.1 1.560  3313 3313 ZZ 3313 2RS 65 140 58.7 3.960 
3214 3214 ZZ 3214 2RS 70 125 39.7 1.800  3314 3314 ZZ 3314 2RS 70 150 63.5 4.740 
3215     75 130 41.3 2.100  3315     76 160 48.3 6.150 
3216     80 140 44.4 2.650  3316     80 170 68.3 6.950 
3217     85 150 49.2 3.400  3317     85 180 73 8.300 
3218     90 160 52.4 4.150  3318     90 190 73 9.250 
3219     95 170 55.6 5.000  3319     95 200 77.8 11.000 
3220     100 180 60.3 6.100  3320     100 215 82.6 13.500 
3222     110 200 69.8 8.800  3322     110 240 92.1 19.000 

The Factory
The advantage ball bearing factory located in the bearing manufacturing center – HangZhou, China. There are 2 plants, 1 specialized in manufacturing common grade ball bearing, another 1 professional in EMQ bearing with stabilized Z3V3 quality, the factory takes her every effort in purchasing the most advanced bearing processes equipment, and NC automatic facilities are widely used in the factory and has become a bearing factory owning the most advanced processes equipment in China. The Granville own ball bearing factory division manufacturing a whole range of radial deep groove ball bearings, open – shield – sealed – chrome steel, and stainless steel available. 

 

Product Offering
Bore size 3mm and up
Closures Open
Non-contact metallic shields
Non-contact seals
Contact seals
Ring Material 52100 chrome steel
440C stainless steel
420C stainless steel
Seal Materiial Nitrile, Polyacrylic 
Retainer Riveted steel
Crimped steel
Crowned steel
Crowned nylon
Precision Class ABEC-1, ABEC-3, ABEC-5, ABEC-7
Radial Clearance C2, C0, C3, C4, C5
Heat Stabilization S0, S1, S2, S3

Manufacturing Process
Granville, as a manufacturer of high-quality products, guarantees compliance with the highest standards relative to the use of the best steel quality in the production process, the highest standards in the design of contact surfaces, as well as the most efficient packing and lubrication of parts.

From material coming, quality control through all processes except internal test, goods to third party inspection if required. After the center of inspection and experiment is founded, effective methods of inspecting all kinds of row materials are mastered and then the reliability of bearings is ensured. 

One of our main objectives is the continued improvement in the quality of our products and processes, in pursuit of which we obtained ISO certification 9001:2008 and TS16949.

 

Quality Control

Advantage Manufacturing Processes and Quality Control
01 Heat Treatment
02 Centerless Gringing Machine 11200(most advanced)
03 Automatic Production Lines for Raceway
04 Automatic Production Lines for Raceway
05 Ultrasonic Cleaning of Rings
06 Automatic Assembly
07 Ultrasonic Cleaning of Bearings
08 Automatic Greasing,Seals Pressing
09 Measurement of Bearing Vibration(Acceleration)
10 Measurement of Bearing Vibration(speed)
11 Laser Marking
12 Automatic Packing

Packing & Shipping

Packing 1.Industrial exporting package
2.Individual plastic / carton / pallet
3.As the customer’s requirements
Delivery date 30-60 days for normal order

Company Profile

Granville group start in London and in order to adapt to the international market situation and enterprise development, Granville gradually oriented to global markets through resource integration, the Granville’s businesses are present across 5 continents. We operate in 4 industry clusters: Components for Industry and automotive; Machine tools and mechatronics; Energy and New Materials, and Healthcare.
 
Comprehensive product range:

— Bearings
— Oil seals, Transmission belt
— Chain and Sprocket
— Hub assembly & Wheel bearings
— Coupling, castings
— Linear motion

Values
— Behavior-based, service-oriented, focused on results and committed to continuous improvement

Focus
— supply chain management and customer service

Advantages
1. Advanced Automatic Lines
2. Comprehensive Range
3. Premium Quality
4. Sustainability

Screw Shaft Features Explained

When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.

Threads

The major diameter of a screw thread is the larger of the 2 extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of 1 sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
screwshaft

Lead

In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around 80 percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.

Pitch

The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of 1 wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the 2 terms and discuss how they relate to 1 another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.

Helix angle

The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
screwshaft

Size

The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to 16 inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of 2 inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
screwshaft

Shape

Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by 2 features: its major diameter, or distance from the outer edge of the thread on 1 side to the inner smooth surface of the shaft. These are generally 2 to 16 millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of 2 opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the 2 main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.

Lubrication

In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.

China Standard Machine Tools Spindle 3310 ZZ/2RS Premium Quality Angular Contact Ball Bearing   with Great qualityChina Standard Machine Tools Spindle 3310 ZZ/2RS Premium Quality Angular Contact Ball Bearing   with Great quality

China Standard Original Brand CZPT CZPT CZPT CZPT Manufacturer Distributor Taper Roller Bearing for Machine Tool Spindle Parts Motor Parts 30334 30336 30334jr 30336jr near me supplier

Product Description

Tapered roller bearings are separable bearings. Both the inner and outer rings of the bearing have tapered raceways. This type
of bearing is divided into single row, double row and 4 row tapered roller bearings according to the number of rows installed.
Tapered roller bearings are mainly subjected to combined radial and axial loads based on the radial direction. Tapered roller
bearings are widely used in industries such as automobiles, rolling mills, mining, metallurgy, and plastic machinery.Tapered roller
bearings are separable bearings. Both the inner and outer rings of the bearing have tapered raceways. This type of bearing is divided
into single row, double row and 4 row tapered roller bearings according to the number of rows installed.Tapered roller bearings are
widely used in industries such as automobiles, rolling mills, mining, metallurgy, and plastic machinery.
 

A wide range of applications:

• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• two Wheeler.

 

Our Bearing Advantage:

1.Free Sample bearing

2.ISO Standard

3.Bearing Small order accepted

4.In Stock bearing

5.OEM bearing service

6.Professional:16 years manufacture bearing

7.Customized bearing, Customer’s bearing drawing or samples accepted

8.Competitive price bearing

9.TT Payment or Western Union or Trade Assurance Order
 

Product Name Taper roller bearing 30334 30336 30334JR 30336JR
Brand Name KOYO
Seals Type OPEN
Material Chrome Steel ,Stainless steel,Ceramic,Nylon
Clearance C0,C2,C3,C4,C5
Precision Grade P0,P6,P5,P4,P2(ABEC1, ABEC3, ABEC5, ABEC7, ABEC9)
Greese SRL ,PS2, Alvania R12 ,etc
Number of Row Single Row  
Certifications ISO 9001
Package Box,Carton,Wooden Box,Plastic Tube or Per buyers requirement .
MOQ 1PCS
Serice  OEM
Sample Available
Payment Term  TT or Western Union
Port HangZhou/HangZhou/ZheJiang

PRODUCT DISPLAY

1. What is your Before-sales Service ?

1.Offer bearing related consultation about technology and application;

2.Help customers about bearing choice, clearance configuration, products’ life and reliability analysis;

3.Offer highly cost-effective and complete solution program according to site conditions;

4.Offer localized program on introduced equipment to save running cost

5.Design and develop non-standard bearing to support customers’ technology innovation.

2. What is your After-sales Service ?

1.Offer training about bearing installation and maintenance;

2.Offer guidance about bearing installation, adjustment and testing at site;

3.Help customers with trouble diagnosis and failure analysis;

4.Visit customers regularly and feedback their rational suggestions and requirements to company.

 If you want to know more details, please contact us.

Worm Gear Motors

Worm gear motors are often preferred for quieter operation because of the smooth sliding motion of the worm shaft. Unlike gear motors with teeth, which may click as the worm turns, worm gear motors can be installed in a quiet area. In this article, we will talk about the CZPT whirling process and the various types of worms available. We’ll also discuss the benefits of worm gear motors and worm wheel.
worm shaft

worm gear

In the case of a worm gear, the axial pitch of the ring pinion of the corresponding revolving worm is equal to the circular pitch of the mating revolving pinion of the worm gear. A worm with 1 start is known as a worm with a lead. This leads to a smaller worm wheel. Worms can work in tight spaces because of their small profile.
Generally, a worm gear has high efficiency, but there are a few disadvantages. Worm gears are not recommended for high-heat applications because of their high level of rubbing. A full-fluid lubricant film and the low wear level of the gear reduce friction and wear. Worm gears also have a lower wear rate than a standard gear. The worm shaft and worm gear is also more efficient than a standard gear.
The worm gear shaft is cradled within a self-aligning bearing block that is attached to the gearbox casing. The eccentric housing has radial bearings on both ends, enabling it to engage with the worm gear wheel. The drive is transferred to the worm gear shaft through bevel gears 13A, 1 fixed at the ends of the worm gear shaft and the other in the center of the cross-shaft.

worm wheel

In a worm gearbox, the pinion or worm gear is centered between a geared cylinder and a worm shaft. The worm gear shaft is supported at either end by a radial thrust bearing. A gearbox’s cross-shaft is fixed to a suitable drive means and pivotally attached to the worm wheel. The input drive is transferred to the worm gear shaft 10 through bevel gears 13A, 1 of which is fixed to the end of the worm gear shaft and the other at the centre of the cross-shaft.
Worms and worm wheels are available in several materials. The worm wheel is made of bronze alloy, aluminum, or steel. Aluminum bronze worm wheels are a good choice for high-speed applications. Cast iron worm wheels are cheap and suitable for light loads. MC nylon worm wheels are highly wear-resistant and machinable. Aluminum bronze worm wheels are available and are good for applications with severe wear conditions.
When designing a worm wheel, it is vital to determine the correct lubricant for the worm shaft and a corresponding worm wheel. A suitable lubricant should have a kinematic viscosity of 300 mm2/s and be used for worm wheel sleeve bearings. The worm wheel and worm shaft should be properly lubricated to ensure their longevity.

Multi-start worms

A multi-start worm gear screw jack combines the benefits of multiple starts with linear output speeds. The multi-start worm shaft reduces the effects of single start worms and large ratio gears. Both types of worm gears have a reversible worm that can be reversed or stopped by hand, depending on the application. The worm gear’s self-locking ability depends on the lead angle, pressure angle, and friction coefficient.
A single-start worm has a single thread running the length of its shaft. The worm advances 1 tooth per revolution. A multi-start worm has multiple threads in each of its threads. The gear reduction on a multi-start worm is equal to the number of teeth on the gear minus the number of starts on the worm shaft. In general, a multi-start worm has 2 or 3 threads.
Worm gears can be quieter than other types of gears because the worm shaft glides rather than clicking. This makes them an excellent choice for applications where noise is a concern. Worm gears can be made of softer material, making them more noise-tolerant. In addition, they can withstand shock loads. Compared to gears with toothed teeth, worm gears have a lower noise and vibration rate.
worm shaft

CZPT whirling process

The CZPT whirling process for worm shafts raises the bar for precision gear machining in small to medium production volumes. The CZPT whirling process reduces thread rolling, increases worm quality, and offers reduced cycle times. The CZPT LWN-90 whirling machine features a steel bed, programmable force tailstock, and five-axis interpolation for increased accuracy and quality.
Its 4,000-rpm, 5-kW whirling spindle produces worms and various types of screws. Its outer diameters are up to 2.5 inches, while its length is up to 20 inches. Its dry-cutting process uses a vortex tube to deliver chilled compressed air to the cutting point. Oil is also added to the mixture. The worm shafts produced are free of undercuts, reducing the amount of machining required.
Induction hardening is a process that takes advantage of the whirling process. The induction hardening process utilizes alternating current (AC) to cause eddy currents in metallic objects. The higher the frequency, the higher the surface temperature. The electrical frequency is monitored through sensors to prevent overheating. Induction heating is programmable so that only certain parts of the worm shaft will harden.

Common tangent at an arbitrary point on both surfaces of the worm wheel

A worm gear consists of 2 helical segments with a helix angle equal to 90 degrees. This shape allows the worm to rotate with more than 1 tooth per rotation. A worm’s helix angle is usually close to 90 degrees and the body length is fairly long in the axial direction. A worm gear with a lead angle g has similar properties as a screw gear with a helix angle of 90 degrees.
The axial cross section of a worm gear is not conventionally trapezoidal. Instead, the linear part of the oblique side is replaced by cycloid curves. These curves have a common tangent near the pitch line. The worm wheel is then formed by gear cutting, resulting in a gear with 2 meshing surfaces. This worm gear can rotate at high speeds and still operate quietly.
A worm wheel with a cycloid pitch is a more efficient worm gear. It reduces friction between the worm and the gear, resulting in greater durability, improved operating efficiency, and reduced noise. This pitch line also helps the worm wheel engage more evenly and smoothly. Moreover, it prevents interference with their appearance. It also makes worm wheel and gear engagement smoother.
worm shaft

Calculation of worm shaft deflection

There are several methods for calculating worm shaft deflection, and each method has its own set of disadvantages. These commonly used methods provide good approximations but are inadequate for determining the actual worm shaft deflection. For example, these methods do not account for the geometric modifications to the worm, such as its helical winding of teeth. Furthermore, they overestimate the stiffening effect of the gearing. Hence, efficient thin worm shaft designs require other approaches.
Fortunately, several methods exist to determine the maximum worm shaft deflection. These methods use the finite element method, and include boundary conditions and parameter calculations. Here, we look at a couple of methods. The first method, DIN 3996, calculates the maximum worm shaft deflection based on the test results, while the second one, AGMA 6022, uses the root diameter of the worm as the equivalent bending diameter.
The second method focuses on the basic parameters of worm gearing. We’ll take a closer look at each. We’ll examine worm gearing teeth and the geometric factors that influence them. Commonly, the range of worm gearing teeth is 1 to four, but it can be as large as twelve. Choosing the teeth should depend on optimization requirements, including efficiency and weight. For example, if a worm gearing needs to be smaller than the previous model, then a small number of teeth will suffice.

China Standard Original Brand CZPT CZPT CZPT CZPT Manufacturer Distributor Taper Roller Bearing for Machine Tool Spindle Parts Motor Parts 30334 30336 30334jr 30336jr   near me supplier China Standard Original Brand CZPT CZPT CZPT CZPT Manufacturer Distributor Taper Roller Bearing for Machine Tool Spindle Parts Motor Parts 30334 30336 30334jr 30336jr   near me supplier

China supplier Machine Tool Spindle Machine Gas Turbine Ball Bearing 6010 6012 6014 6016 RS Zz CZPT Deep Groove Ball Bearing 6012zz with Hot selling

Product Description

Product Description

Product Name Deep Groove Ball Bearings
Brand Name NMN
Material Chrome Steel  GCr15  Stainless Steel  Ceramic  Nylon
Cage Steel  Brass  Nylon
Weight(Kg) 0.385
Bearing Clearance C0 C2 C3 C4 C5
Seals Type Z 2Z 2RS Znr 2RS1 2rsh 2rsl 2znr
Precision Grade P0  P6  P5  P4  P2
Vibration V1 V2 V3 V4
Quality ABEC1, 3, 5, 7,9
Load Rating(kN) Cr 29.5
Cor 23.2
Limiting Speed Grease 5000
Oil 6300
Serice OEM
Sample Available
Port HangZhou/ZheJiang

Product Details

Single row deep groove ball bearings are used in a wide variety of applications, they are simple in design, non-separable, suitable for high speeds and are robust in operation, and need little maintenance. Deep raceway grooves and the close conformity between the raceway grooves and the balls enable deep groove ball bearings to accommodate axial loads in both directions, in addition to radial loads.

6012 bearing has the advantages of low noise, low friction and high speed, and is equipped with sealing cover, grease, etc., to extend the life of the product.
We provide OEM, ODM and other services, and provide you with relevant consulting information to help you with bearing selection, clearance configuration, product life and reliability analysis. We offer localized shipping solutions to save your shipping costs.
We can provide free samples, can accept custom LOGO or drawings, can design packaging according to requirements.

Bearing Models

 

Number Specifiction Load Rating (KN) Limiting Speed (r/min) Weight(Kg/pc)
d(mm) D(mm) B(mm) r(mm) Cr Cor Grease Oil
604 4 12 4 0.2 0.9 0.36 43000 51000 0.002
605 5 14 5 0.2 1.33 0.505 39000 46000 0.0035
606 6 17 6 0.3 2.19 0.865 30000 38000 0.006
607 7 19 6 0.3 2.24 0.91 28000 3600 0.008
608 8 22 7 0.3 3.35 1.4 26000 34000 0.012
609 9 24 7 0.3 3.4 1.45 22000 30000 0.014
6000 10 26 8 0.3 4.55 1.96 20000 28000 0.019
6001 1 28 8 0.3 5.1 2.39 19000 26000 0.571
6002 15 32 9 0.3 5.6 2.84 18000 24000 0.03
6003 17 35 10 0.3 6.8 3.35 17000 22000 0.039
6004 20 42 12 0.6 9. 5.05 1000 19000 0.069
6005 25 47 12 0.6 10.1 5.85 13000 17000 0.08
6006 30 55 13 1.0 13.2 8.3 12000 15000 0.116
6007 35 62 14 1.0 16 10.3 10000 13000 0.155
6008 40 8 15 1.0 16.8 11.5 8000 11000 0.185
6009 45 5 16 1.0 21 15.1 7200 9000 0.231
6571 50 80 16 1.0 21.8 16.6 6400 7800 0.25
6011 55 90 18 1.1 28.3 21.2 5700 7000 0.362
6012 60 95 18 1.1 29.5 23.2 5000 6300 0.385
6013 65 100 18 1.1 31.9 25 4800 6100 0.44
6014 70 110 20 1.1 39.7 31 4600 5800 0.6
6015 75 115 20 1.1 41.6 33.5 4400 5600 0.64
6016 80 125 22 1.1 47.5 40 4300 5500 0.854
6017 85 130 22 1.1 49.5 43 200 5300 0.89
6018 90 140 24 1.5 58 49.5 4000 5100 1.02
624 4 13 5 0.2 1.31 0.49 36000 45000 0.0032
625 5 16 5 0.3 1.76 0.68 32000 40000 0.0048
626 6 19 6 0.3 2.34 0.885 28000 36000 0.0081
627 7 22 7 0.3 3.35 1.40 26000 34000 0.013
628 8 24 8 0.3 4.00 1.59 24000 32000 0.017
629 9 26 8 0.3 4.55 1.96 22000 40000 0.0048

Packaging & Shipping

·Plastic rolling packing + Plastic bag + Paper carton
·Single Box + Plastic rolling packing + Plastic bag + Paper carton+pallet
·According to customer requirement

Applications

About Us

ZheJiang CZPT Bearing Group is a professional bearing manufacturer and exporter in China. We have been engaged in bearing industry for 20 years. Our company is specialized in producing Deep Groove Ball Bearings, Tapered Roller Bearings, Spherical Roller Bearings and Special Bearings in accordance with Customers’ designs.Our bearings has been widely applied into agricultural equipments, home appliances, power equipments, machine tools, automotives and engineering machinery, etc.

Our production is strictly executed with ISO9001 and ISO14001. Our products are mainly exported to Singapore, South Kora, Vietnam, Thailand, Turkey, Pakistan, Australia, Polan, France, UK, South America, USA, South Africa and other countries and regions of the world, with great public praise of high quality and reasonable price.

Company Profile

FAQ

1.Q:Could you supply free sample of bearing for our test?
A:Yes. Please afford the express fee and we will send you the sample within your first order.

2.Q:Sample time?
A:Within 3-4 days.

3.Q:Are you a factory or a Trade Company for Bearing ?
A:We are the factory.

4.Q:Whether you could make your products by our color?
A:Yes, The color of products can be customized if you can meet our MOQ.

5.Q:Could you accept OEM and customize?
A:Yes, OEM and ODM are accepted and we can customize for you according to sample or drawing.

6.Q:Do you have stocks?
A:Yes, most of the bearings showing on alibaba are in stock,especialy big bearings.

 

 

 

We sincerely hope we can build a long term relationship with all the clients and we also have great confidence in cooperating with every potential customer by most premium service and competitive price.

Welcome your inquiry and welcome your visit. 

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
screwshaft

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China supplier Machine Tool Spindle Machine Gas Turbine Ball Bearing 6010 6012 6014 6016 RS Zz CZPT Deep Groove Ball Bearing 6012zz   with Hot sellingChina supplier Machine Tool Spindle Machine Gas Turbine Ball Bearing 6010 6012 6014 6016 RS Zz CZPT Deep Groove Ball Bearing 6012zz   with Hot selling